Automata
\[ \neg\text{Decidable}(A_{TM} := \{\langle M,w \rangle \space | \space w \in M:\text{TM}\}) \]
ord which takes a finite set of printable characters to \(\mathbb{N}\)chr which takes a finite subset of infinite numerical values but maps to every printing character.xxxyzx|
Bijective |
Injective |
|
Surjective |
Neither |
[0, -1, 1, -2, 2, -3, 3, -4, 4, -5]
count| 1 | 2 | 3 | 4 | \(\ldots\) | |
|---|---|---|---|---|---|
| 1 | \(\dfrac{1}{1}\) | \(\dfrac{1}{2}\) | \(\dfrac{1}{3}\) | \(\dfrac{1}{4}\) | |
| 2 | \(\dfrac{2}{1}\) | \(\dfrac{2}{2}\) | \(\dfrac{2}{3}\) | \(\dfrac{2}{4}\) | |
| 3 | \(\dfrac{3}{1}\) | \(\dfrac{3}{2}\) | \(\dfrac{3}{3}\) | \(\dfrac{3}{4}\) | |
| 4 | \(\dfrac{4}{1}\) | \(\dfrac{4}{2}\) | \(\dfrac{4}{3}\) | \(\dfrac{4}{4}\) |
| 1 | 2 | 3 | 4 | \(\ldots\) | |
|---|---|---|---|---|---|
| 1 | \(\dfrac{1}{1}\) | \(\dfrac{1}{2}\) | \(\dfrac{1}{3}\) | \(\dfrac{1}{4}\) | |
| 2 | \(\dfrac{2}{1}\) | \(\dfrac{2}{2}\) | \(\dfrac{2}{3}\) | \(\dfrac{2}{4}\) | |
| 3 | \(\dfrac{3}{1}\) | \(\dfrac{3}{2}\) | \(\dfrac{3}{3}\) | \(\dfrac{3}{4}\) | |
| 4 | \(\dfrac{4}{1}\) | \(\dfrac{4}{2}\) | \(\dfrac{4}{3}\) | \(\dfrac{4}{4}\) |
[1, 3, 6, 10]
[2, 5, 9, 14]
[4, 8, 13, 19]
[7, 12, 18, 25]
| 1 | 2 | 3 | 4 | |
|---|---|---|---|---|
| 1 | \(\dfrac{1}{1}\) | \(\dfrac{1}{2}\) | \(\dfrac{1}{3}\) | \(\dfrac{1}{4}\) |
| 2 | \(\dfrac{2}{1}\) | \(\dfrac{2}{3}\) | ||
| 3 | \(\dfrac{3}{1}\) | \(\dfrac{3}{2}\) | \(\dfrac{3}{4}\) | |
| 4 | \(\dfrac{4}{1}\) | \(\dfrac{4}{3}\) |
\[ |\mathbb{N}| = |\mathbb{Z}| = |\mathbb{Q}| \]
Proof.
| 1 | 2 | 3 | 4 | |
|---|---|---|---|---|
| 1 | \(\dfrac{1}{1}\) | \(\dfrac{1}{2}\) | \(\dfrac{1}{3}\) | \(\dfrac{1}{4}\) |
| 2 | \(\dfrac{2}{1}\) | \(\dfrac{2}{3}\) | ||
| 3 | \(\dfrac{3}{1}\) | \(\dfrac{3}{2}\) | \(\dfrac{3}{4}\) | |
| 4 | \(\dfrac{4}{1}\) | \(\dfrac{4}{3}\) |
\[ |\mathbb{R}| \gt |\mathbb{N}| \]
| \(n\) | \(f(n): \mathbb{N} \rightarrow \mathbb{R}\) |
|---|---|
| 1 | |
| 2 | |
| 3 | |
| 4 |
| \(n\) | \(f(n): \mathbb{N} \rightarrow \mathbb{R}\) |
|---|---|
| 1 | \(\pi = 3.14159\ldots\) |
| 2 | \(e = 2.71828\ldots\) |
| 3 | \(0 = 0.00000\ldots\) |
| 4 | \(x = 1.41421\ldots\) |
| 5 | \(y = 0.14286\ldots\) |
| 6 | \(z = 0.20788\ldots\) |
| 7 | \(v = 1.23456\ldots\) |
\[ |\mathbb{R}| \gt |\mathbb{N}| \]
\(Proof.\)
\[ \neg\text{Decidable}(A_{TM} := \{\langle M,w \rangle \space | \space w \in M:\text{TM}\}) \]