Automata
\[ \neg\text{Decidable}(A_{TM} := \{\langle M,w \rangle \space | \space w \in M:\text{TM}\}) \]
\[ |\mathbb{N}| = |\mathbb{Z}| = |\mathbb{Q}| \]
Proof.
1 | 2 | 3 | 4 | |
---|---|---|---|---|
1 | \(\dfrac{1}{1}\) | \(\dfrac{1}{2}\) | \(\dfrac{1}{3}\) | \(\dfrac{1}{4}\) |
2 | \(\dfrac{2}{1}\) | \(\dfrac{2}{3}\) | ||
3 | \(\dfrac{3}{1}\) | \(\dfrac{3}{2}\) | \(\dfrac{3}{4}\) | |
4 | \(\dfrac{4}{1}\) | \(\dfrac{4}{3}\) |
\[ |\mathbb{R}| \gt |\mathbb{N}| \]
\(Proof.\)
\[ \neg\text{Decidable}(A_{TM} := \{\langle M,w \rangle \space | \space w \in M:\text{TM}\}) \]