
Practice Final A

Name:

Please answer the following questions within the space provided on the online template.
Format your solutions as well as you are able within the online text editor. While you are not
required to document your code here, comments may help me to understand what you were
trying to do and thus increase the likelihood of partial credit should something go wrong. If
you get entirely stuck somewhere, explain in words as much as possible what you would try.

Each question clearly shows the number of points available and should serve as a rough
metric to how much time you should expect to spend on each problem. You can assume
that you can import any of the common libraries we have used throughout the semester thus far.

The exam is partially open, and thus you are free to utilize:

• The text

• Your notes

• Class slides

• Any past work you have done as part of sections, problem sets, or projects, provided it
has been uploaded, and you access it through GitHub.

• The in-Canvas calculator on problems that offer it.

While you are allowed to use a computer for ease of typing and accessing the above resources,
you are prohibited from accessing and using any editor or terminal to run your code.
Visual Studio Code or any similar editor should never be open on your system during this
exam. Additionally, you are prohibited from accessing outside internet resources beyond
the webpages described above. Your work must be your own on this exam, and under no
conditions should you discuss the exam or ask questions to anyone but myself. Failure to
abide by these rules will be considered a breach of Willamette’s Honor Code and will result
in penalties as set forth by Willamette’s academic honesty policy.

Please sign and date the below lines to indicate that you have read and understand
these instructions and agree to abide by them. Failure to abide by the rules will result
in a 0 on the test. Good luck!!

Signature Date

CS151

1.(10) Reading Python
For each of the below pieces of code, evaluate what would be printed on the final line.
Show as much work as you can for the potential of partial credit.

(a) def mystery (x, y=10):
z = len(x)
return puzzle(x, y) + puzzle(w[: enigma(z ,3)] ,y)

def enigma(x, w):
return x - w ** 2

def puzzle(y, z):
return y[z:]

w = " gingerbread man"
print(mystery (w, -3))

Solution: The string "gingerbread man" is passed into mystery and assigned
to x, and the -3 is passed in and assigned to y. The length of "gingerbread man"
is thus 15, which is assigned to z. Then we evaluate puzzle(x,y), which here
will be puzzle("gingerbread man", -3).
Thus the "gingerbread man" is assigned to the y parameter in puzzle, and
the -3 to the z parameter. So we are just returning "gingerbread man"[-3:],
or "man".
Resuming back in mystery, we now need to compute puzzle(w[:enigma(z,3)], y),
but doing so requires knowledge of what enigma(z,3) is. z here was 15, so we
are evaluating enigma(15, 3).
enigma has two parameters, y and w, and so the arguments are assigned posi-
tionally: the 15 to the y and the 3 to the w. Thus we are returning 15 - 3 ** 2,
or 6.
Back in mystery, we now need to evaluate puzzle(w[:6], y). w is not defined
within mystery, but it is defined in the enclosing scope (which is also the global
scope here). y is -3. So we are evaluating puzzle("gingerbread man"[:6], -3),
which is the same as puzzle("ginger", -3).
This is essentially the same calculation as earlier though, so the "ginger"
is assigned to the y in puzzle, and the -3 to the z. So we then evaluate
"ginger[-3:]", which is just "ger".
Back in mystery, we are thus returning "man" + "ger", and so what would be
printed to the screen would be "manger".

(b) class Frosty:
def __init__ (self , n, c):

CS 151 Practice Final A Points on Page: 10

self.wild = [c]
self.n = n

def snowball (self , h=3):
self.n -= h
self.wild += [self.n]

def cap(self):
return self.wild

f = Frosty (8, 15)
f. snowball ()
f. snowball (1)
A = f.cap ()
A.append (1)
print(sum(f.cap ()))

Solution: We start by making a Frosty object, which passes in 5 to n and 12
to c in the constructor method. As such, we initialize the wild attribute to a
list of a single value: [15], and the n attribute to an integer: 8. This newly
created object gets assigned to the variable f.
Calling the snowball method of f, we use the default value for h: 3. We thus
decrement the current n attribute of 8 by 3, resulting in a value of 5. Then
we concatenate this value to our wild attribute, so that now wild is [15, 5].
Calling again the snowball method of f, this time a value of h was provided:
1. We thus decrement the current n attribute of 5 by 1, resulting in a value
of 4. Then we concatenate this value to our wild attribute, so that now wild
is [15, 5, 4]. Calling the cap function on f just returns a reference to the
wild attribute of f, which we assign to the variable A. Then we go to append
1 to A, which would result in the wild attribute of f being updated to be
[15, 5, 4, 1]. Thus in the end when we print out the sum of f.cap, since it
just returns the wild attribute, we’d get sum([15, 5, 4, 1]), or 25.

CS 151 Practice Final A Points on Page: 0

2.(10) Fundamental Python
In 2018 the YouTube channel Numberphile aired a special showcasing one method of
visualizing the Racamán sequence, resulting in the interesting behavior shown below:

The Racamán sequence is defined to start at 0, often termed a0, as it is the 0th term.
The nth future value in the sequence is determined by

an =
an−1 − n, if an−1 − n > 0 and has not already appeared in the sequence

an−1 + n, otherwise

So for the a1 term, where n = 1, an−1 − n = a0 − 1 = 0 − 1 is less than 0, so instead we
would add 0 + 1, making an = 1. This continues for the first few terms:

a0 = 0
a1 = 1
a2 = 3
a3 = 6

At a4, note that 6 − 4 > 0, and the value 2 has not yet shown up in the sequence, so
a4 = 2. So the next few terms would be:

a4 = 2
a5 = 7

At a6, 7 − 6 > 0, but the value 1 has already shown up in the sequence (a1), so instead
we add, making a6 = 13. The sequence then proceeds onward infinitely.
Write a function called racaman which takes as input a single integer describing the
desired term n and returns the nth value of the Racamán sequence. Running your
function would look like:
>>> print(racaman (3))
6
>>> print(racaman (6))
13

CS 151 Practice Final A Points on Page: 10

Solution: Most of the description here was in trying to describe what the math was
doing in case the equations didn’t make sense. But the algorithm is pretty simple.
Trickiest bit is just ensuring that you get the limits of your loop correct, and realizing
that you need to keep a list of all the values seen so far.

def racaman (num):
if num == 0:

return 0
seq = [0]
for n in range (1, num +1):

potential = seq[n -1] - n
if potential > 0 and potential not in seq:

seq. append (potential)
else:

seq. append (seq[n -1] + n)
return seq [-1]

CS 151 Practice Final A Points on Page: 0

3.(20) Interactive Graphics
In all likelihood, you have at some point seen the classic “Fifteen Puzzle” which first
appeared in the 1880s. The puzzle consists of 15 numbered squares in a 4 × 4 box that
looks like the following image (taken from the Wikipedia entry):

One of the squares is missing from the 4x4 grid. The puzzle is constructed so that you
can slide any of the adjacent squares into the position taken up by the missing square.
The object of the game is to restore a scrambled puzzle to its original ordered state.
Your task here is to simulate the Fifteen Puzzle, which is easiest to do in two steps:

Step 1:
Write a program that displays the initial state of the Fifteen Puzzle with the 15 num-
bered squares as shown in the diagram. Each of the pieces should be a GCompound
containing a square filled in light gray, with a number centered in the square using
an 18-point Sans-Serif font, as specified in the following constants:
SQUARE_SIZE = 60
GWINDOW_WIDTH = 4 * SQUARE_SIZE
GWINDOW_HEIGHT = 4 * SQUARE_SIZE
SQUARE_FILL_COLOR = " LightGray "
PUZZLE_FONT = "18px 'Sans -Serif '"

The completed code after Step 1 would have the graphics window looking something
like this:

Step 2:
Animate the program so that clicking on a square moves it into the empty space,
if possible. This task is easier than it sounds. All you need to do is:

CS 151 Practice Final A Points on Page: 20

1. Figure out which square you clicked on, if any, by using get_element_at to
check for an object at that location.

2. Check the adjacent squares to the north, south, east and west. If any square is
inside the window and unoccupied, move the square in that direction. If none
of the directions work, do nothing.

For example, if you click on the square numbered 5 in the starting configuration,
nothing should happen because all of the directions from square 5 are either oc-
cupied or outside the window. If, however, you click on square 12, your program
should figure out that there is no object to the south and then move the square to
that position, so that it would end look like:

Solution: As always, this is not the only way to do this. Here I decided to make the
pieces in a class that stored things in an internal gcompound. And when I went to
check the different directions, I just supplied them in a list of tuples to iterate over.

from pgl import GWindow , GRect , GLabel , GCompound

SQUARE_SIZE = 60
GWINDOW_WIDTH = 4 * SQUARE_SIZE
GWINDOW_HEIGHT = 4 * SQUARE_SIZE
SQUARE_FILL_COLOR = " LightGray "
PUZZLE_FONT = "18px 'Sans -Serif '"

class Piece:
def __init__ (self , num):

self. compound = GCompound ()
square = GRect(SQUARE_SIZE , SQUARE_SIZE)
square . set_filled (True)
square . set_fill_color (SQUARE_FILL_COLOR)
value = GLabel (str(num))
value. set_font (PUZZLE_FONT)
value.move(

SQUARE_SIZE / 2 - value. get_width () / 2,
SQUARE_SIZE / 2 + value. get_ascent () / 2,

CS 151 Practice Final A Points on Page: 0

)
self. compound .add(square)
self. compound .add(value)

def click_action (e):
mx , my = e.get_x (), e.get_y ()
current = gw. get_element_at (mx , my)
if current is not None:

for x, y in [(-1, 0), (1, 0), (0, -1), (0, 1)]:
cx = mx + x * SQUARE_SIZE
cy = my + y * SQUARE_SIZE
if ((0 < cx < GWINDOW_WIDTH) and

(0 < cy < GWINDOW_HEIGHT)):
elem = gw. get_element_at (cx , cy)
if elem is None:

current .move(x * SQUARE_SIZE ,
y * SQUARE_SIZE)

return

gw = GWindow (GWINDOW_WIDTH , GWINDOW_HEIGHT)
for i in range (15):

p = Piece(i + 1)
p. compound .move(SQUARE_SIZE * (i % 4),

SQUARE_SIZE * (i // 4))
gw.add(p. compound)

gw. add_event_listener ("click", click_action)

CS 151 Practice Final A Points on Page: 0

4.(15) Strings and Files
Suppose you have a file name data.txt that, for whatever reason, is filled with some
number of ASCII characters. As an example, a few lines from one such file might look
like:

baot234’yn8bas92*b
s2ba#9don71abis012
,fygx*@qnadb543nas

On each line of the file, you are guaranteed that a numeric digit will appear somewhere.
Your task is, for each line, to identify the first number (which might be any number
of consecutive digits) on a line, and the last number (which might be any number of
consecutive digits) on the line and subtract the last from the first. Your function should
return the total sum of all the line calculated values added together.
For instance, in the above example:

• The first number appearing in line 1 is 234, and the last number to appear is 92.
234 − 92 = 142

• The first number appearing in line 2 is 2, and the last number to appear is 012, or
12. 2 − 12 = −10

• The first number appearing in line 3 is 543, and the last number to appear is 543.
Thus 543 − 543 = 0

Summing up the results from each line, the function would return 142 − 10 + 0 = 132.
Write a function process_file(filename) that takes a filename as an argument, and
then opens that file and returns the total sum of the line scores in that file as described
above.

Solution: One solution might look like:
def process_file (filename):

""" Opens and processes a file by finding the first and last
numbers on each line , taking the difference , and then summing
that difference over all lines.
"""
diff_sum = 0
with open(filename) as fh:

for line in fh:
first = find_first (line)
last = find_last (line)
diff = first - last
diff_sum += diff

return diff_sum

CS 151 Practice Final A Points on Page: 15

def find_first (line):
""" Finds the first number to occur on a line."""
number = ""
i = 0
while not line[i]. isdigit (): #find where num starts

i += 1
while line[i]. isdigit (): #read num

number += line[i]
i += 1

return int(number)

def find_last (line):
""" Finds the last number to occur on a line."""
number = ""
i = len(line) - 1
while not line[i]. isdigit (): #find where num starts

i -= 1
while line[i]. isdigit (): #read num

number = line[i] + number
i -= 1

return int(number)

CS 151 Practice Final A Points on Page: 0

5.(10) Defining Classes For certain applications, it is useful to be able to generate a series
of names that form a sequential pattern. For example, if you were writing a program
to number figures in a paper, having some mechanism to return the sequence of strings
"Figure 1", "Figure 2", "Figure 3", and so on, would be very handy. However, you
might also need to label points in a geometric diagram, in which case you would want a
similar but independent set of labels for points such as "P0", "P1", "P2", and so forth.
Your task in this problem is to implement a LabelGenerator class with the following
methods:

• A constructor that takes two arguments: a string indicating the prefix for the labels
and an optional starting index for the sequence number, which defaults to 1. For
example, calling LabelGenerator("Figure ") would return a LabelGenerator
for the figure labels described earlier, and calling LabelGenerator("P",0) would
return a LabelGenerator for the points.

• A next_label method that returns the next label in that sequence. For example,
the code sequence:
figures = LabelGenerator ("Figure ")
print(figures . next_label ())
print(figures . next_label ())
print(figures . next_label ())

would generate the following output:
Figure 1
Figure 2
Figure 3

Solution: The only real thing here to be careful of is that you can’t return the label
until after you’ve incremented the counter, so I saved it to a temporary variable.

class LabelGenerator :
def __init__ (self , prefix , start =1):

self. _prefix = prefix
self. _count = start

def next_label (self):
label = f"{self. _prefix }{ self. _count }"
self. _count += 1
return label

CS 151 Practice Final A Points on Page: 10

6.(20) Python Data Structures
Adventure was not the first widely played computer game in which an adventurer wan-
dered in an underground cave. As far as we know, that honor belongs to the game “Hunt
the Wumpus,” which was developed by Gregory Yob in 1972.
In the game, the wumpus is a fearsome beast that lives in an underground cave composed
of 20 rooms, each of which is numbered between 1 and 20. Each of the twenty rooms
has connections to three other rooms, represented as a three-element tuple containing
the numbers of the connection rooms in the data structure below. (Because the room
numbers start with 1 instead of 0, the data store some irrelevant arbitrary value in
element 0 of the room list.) In addition to the connections, the data structure that
stores the data for the wumpus game also keeps track of which room number the player
is currently occupying, and which room number the wumpus is currently in.
In an actual implementation of the wumpus game, the information in this data structure
would be generated randomly. For this problem, which is focusing on whether you can
work with data structures that have already been initialized, you can imagine that the
variable cave has been initialized to the dictionary shown on the next page. The data
structure shows the following:

• The player is in room 2
• The wumpus is in room 19
• Room 1 connects to rooms 6, 14, and 19; room 2 connects to 3, 7, and 18; and so

on.

To help you visualize the situation, here is a piece of the cave map, centered on the
current location of the player in room 2:

P
2 3

7

18

12

W
19 20

164

11

CS 151 Practice Final A Points on Page: 20

The player is in room 2, which has connections to rooms 3, 7, and 18. Similarly, room
7 has connections to rooms 2, 12, and 19, which is where the wumpus is lurking. The
other connections from rooms 4, 11, 16, 20, 12, and 19 are not shown in the above image.
The data structure for the wumpus cave is shown here:
cave = {

" player ": 2,
" wumpus ": 19,
" connections ": [

None , # Room 0 is not used
[6, 14, 16], # Room 1 connects to 6, 14, and 16
[3, 7, 18], # Room 2 connects to 3, 7, and 18
[2, 16, 20], # Room 3 connects to 2, 16, and 20
[6, 18, 19], # Room 4 connects to 6, 18, and 19
[8, 9, 11], # Room 5 connects to 8, 9, and 11
[1, 4, 15], # Room 6 connects to 1, 4, and 15
[2, 12, 19], # Room 7 connects to 2, 12, and 19
[5, 10, 13], # Room 8 connects to 5, 10, and 13
[5, 11, 17], # Room 9 connects to 5, 11, and 17
[8, 14, 16], # Room 10 connects to 8, 14, and 16
[5, 9, 18], # Room 11 connects to 5, 9, and 18
[7, 14, 15], # Room 12 connects to 7, 14, and 15
[8, 15, 20], # Room 13 connects to 8, 15, and 20
[1, 10, 12], # Room 14 connects to 1, 10, and 12
[6, 12, 13], # Room 15 connects to 6, 12, and 13
[1, 3, 10], # Room 16 connects to 1, 3, and 10
[9, 19, 20], # Room 17 connects to 9, 19, and 20
[2, 4, 11], # Room 18 connects to 2, 4, and 11
[4, 7, 17], # Room 19 connects to 4, 7, and 17
[3, 13, 17], # Room 20 connects to 3, 13, and 17

]
}

It is usually possible to avoid the wumpus because the wumpus is so stinky that the
player can smell it from 2 rooms away. Thus, in the previous diagram, the player can
smell the wumpus. If, however, the wumpus were to move to a room beyond the current
boundaries of the diagram, the player would no longer be able to smell the wumpus.
Your task here is to write a predicate function player_smells_a_wumpus, which takes
the entire wumpus data structure as an argument and returns True if the player smells
a wumpus and False otherwise. Thus calling:
player_smells_a_wumpus (cave)

would return True, given the current values in the cave. The function would also return
True if the wumpus were in rooms 3, 7, or 18, which are one room away from the player.
If, however, the wumpus were in a room not shown in the above diagram (room 6,
for example, which would connect to room 4), player_smells_a_wumpus would return
False.

CS 151 Practice Final A Points on Page: 0

Solution: This is not as complicated as it might seem. We just need to check
the connecting rooms to the players current location, and also check each of the
connecting rooms to those rooms. One approach might look like:
def player_smells_a_wumpus (data):

player = data['player ']
wumpus = data['wumpus ']
connecting_rooms = data['connections ']
if player == wumpus:

return True
Check immediate rooms that connect to player
for room1 in connecting_rooms [player]:

if room1 == wumpus:
return True

#Check rooms that connect to connecting room
for room2 in connecting_rooms [room1]:

if room2 == wumpus:
return True

return False

CS 151 Practice Final A Points on Page: 0

