
Textbook
https://jrembold.github.io/Website_Backup/class_files/cs151/CS151-Reader-2023.pdf

Arithmetic/PEMDAS:
https://cd-public.github.io/courses/cs1f24/slides/w3d1_py2.html#/2

https://www.geeksforgeeks.org/precedence-and-associativity-of-operators-in-python/

https://www.w3schools.com/python/python_operators.asp

Booleans:
https://cd-public.github.io/courses/cs1f24/slides/w3d2_range.html#/13

https://www.geeksforgeeks.org/boolean-data-type-in-python/

https://www.w3schools.com/python/python_booleans.asp

Strings:
https://cd-public.github.io/courses/cs1f24/slides/w4d2_str1.html
https://cd-public.github.io/courses/cs1f24/slides/w4d3_str2.html

https://www.geeksforgeeks.org/python-string/

https://www.w3schools.com/python/python_strings.asp

if/def/for/while:
https://cd-public.github.io/courses/cs1f24/slides/w2d2_karel4.html#/31

https://www.geeksforgeeks.org/python-if-else/
https://www.geeksforgeeks.org/python-for-loops/
https://www.geeksforgeeks.org/python-functions/

https://www.w3schools.com/python/python_conditions.asp
https://www.w3schools.com/python/python_for_loops.asp
https://www.w3schools.com/python/python_functions.asp

https://jrembold.github.io/Website_Backup/class_files/cs151/CS151-Reader-2023.pdf
https://cd-public.github.io/courses/cs1f24/slides/w3d1_py2.html#/2
https://www.geeksforgeeks.org/precedence-and-associativity-of-operators-in-python/
https://www.w3schools.com/python/python_operators.asp
https://cd-public.github.io/courses/cs1f24/slides/w3d2_range.html#/13
https://www.geeksforgeeks.org/boolean-data-type-in-python/
https://www.w3schools.com/python/python_booleans.asp
https://cd-public.github.io/courses/cs1f24/slides/w4d2_str1.html
https://cd-public.github.io/courses/cs1f24/slides/w4d3_str2.html
https://www.geeksforgeeks.org/python-string/
https://www.w3schools.com/python/python_strings.asp
https://cd-public.github.io/courses/cs1f24/slides/w2d2_karel4.html#/31
https://www.geeksforgeeks.org/python-if-else/
https://www.geeksforgeeks.org/python-for-loops/
https://www.geeksforgeeks.org/python-functions/
https://www.w3schools.com/python/python_conditions.asp
https://www.w3schools.com/python/python_for_loops.asp
https://www.w3schools.com/python/python_functions.asp

1.2 Numeric data 3

For string data, the domain comprises sequences of characters that appear on the
keyboard or that can be displayed on the screen. The set of operations is the toolbox
that allows you to manipulate values of that type. For numeric data, the set of
operations includes addition, subtraction, multiplication, and division, along with a
variety of more sophisticated functions. For string data, however, it is hard to imagine
what an operation like subtraction might mean. Using string data requires a different
set of operations, such as combining two strings to form a longer one or comparing
two strings to see if they are in alphabetic order. The general rule is that the set of
operations must be appropriate to the elements of the domain. The two components
together—the domain and the operations—define a data type.

1.2 Numeric data
Computers today store data in so many exciting forms that numbers may seem a bit
boring. Even so, numbers are a good starting point for talking about data, mostly
because they are both simple and familiar. You’ve been using numbers, after all, ever
since you learned to count. Moreover, as you’ll discover in Chapter 7, all information
is represented inside the computer in numeric form.

Representing numbers in Python
One of the important design principles of modern programming languages is that
concepts that are familiar to human readers should be expressed in an easily
recognizable form. Like most languages, Python adopts that principle for numeric
representation, which means that you can write numbers in a Python program in much
the same way you would write them anywhere else.

In their most common form, numbers consist of a sequence of digits, optionally
containing a decimal point. Negative numbers are preceded by a minus sign. For
example, the following are all legal numbers in Python:

0 42 -273 3.14159265 -0.5 1000000

Note that large numbers, such as the value of one million shown in the last example,
are written without using commas to separate the digits into groups of three.

Numbers can also be written in a variant of scientific notation, in which the value
is represented as a number multiplied by a power of 10. To express a value in
scientific notation, you write a number in standard decimal notation, followed
immediately by the letter E and an integer exponent, optionally preceded by a + or -
sign. For example, the speed of light is approximately 2.9979 ´ 108 meters per
second, which can be written in Python as

2.9979E+8

4 Introducing Python

In Python’s scientific notation, the letter E is shorthand for times 10 to the power.

Like most languages, Python separates numbers into two classes: integers, which
represent whole numbers, and floating-point numbers, which contain a decimal point.
Integers have the advantage of being exact. Floating-point numbers, by contrast, are
approximations whose accuracy is determined by hardware limitations. Fortunately,
Python also defines its mathematical operators in a way that makes it less important
than it is in most languages to pay attention to the distinction between these two types
of numbers.

In addition to integers and floating-point numbers, Python defines a third type of
numeric data used to represent complex numbers, which combine a real component
and an imaginary component corresponding to the square root of –1. Although
complex numbers are beyond the scope of this text, the fact that Python includes
complex numbers as a fully supported, built-in type makes Python especially
attractive for scientific and mathematical applications in which complex numbers
play an important role.

Arithmetic expressions
The real power of numeric data comes from the fact that Python allows you to perform
computation by applying mathematical operations, ranging in complexity from
addition and subtraction up to highly sophisticated mathematical functions. As in
mathematics, Python allows you to express those calculations through the use of
operators, such as + and - for addition and subtraction.

If you want to understand how Python works, the best approach is to use the
Python interpreter, which is called IDLE. (Van Rossum claims that the name is an
acronym of Integrated DeveLopment Environment, but the common assumption is
that the name honors Monty Python’s Eric Idle.) IDLE allows you to enter Python
expressions and see what values they produce

To get a sense of how interactions with IDLEwork, suppose that you want to solve
the following problem, which the singer-songwriter, political satirist, and
mathematician Tom Lehrer proposed in his song “New Math” in 1965:

To find the answer, all you have to do is enter the subtraction into IDLE, as follows:

Tom Lehrer

1.2 Numeric data 5

This computation is an example of an arithmetic expression, which consists of a
sequence of values called terms combined using symbols called operators, most of
which are familiar from elementary-school arithmetic. The arithmetic operators in
Python include the following:

- a Negation (multiply a by –1 to reverse its sign)
a + b Addition (add a and b)
a - b Subtraction (subtract b from a)
a * b Multiplication (multiply a and b)
a / b True division (divide a by b)
a // b Floor division (a / b rounded down to the next integer)
a % b Remainder (compute the mathematical result of a mod b)
a ** b Exponentiation (raise a to the b power)

Although most of these operators should be familiar from basic arithmetic, the //
and % operators require additional explanation. Intuitively, these operators compute
the quotient and remainder, respectively, when one value divided by another. For
example, 7 // 3 has the value 2, because 7 divided by 3 leaves a whole number
quotient of 2. Similarly, 7 % 3 has the value 1, because 7 divided by 3 leaves a
remainder of 1. If one number is evenly divisible by another, there is no remainder,
so that, for example, 12 % 4 has the value 0.

Unlike almost every other programming language, Python defines // and % for
negative operands so that the result is consistent with mathematical convention. The
// operator computes the result by performing an exact division and then rounding
the result down to the next smaller integer. In mathematics, rounding a number down
to the closest integer is called computing its floor. For example, the expression -

9 // 5 has the value –2, because exact division produces –1.8, and the floor of –1.8
is –2. In computing the remainder, the % operator applies what mathematicians call
the mod operator, which always has the same sign as the divisor. The // and %

operators are related by the following equivalence:

x º (x // y) ´ y + x % y

Even though Python’s definition of these operators makes mathematicians happy,
the programs in this text use the // and % operators only with positive integers, where
the result corresponds to the notions of quotient and remainder that you learned in
elementary school. In part, the reason for this design decision is to avoid making
programming seem more mathematical than it in fact is. In addition, it is dangerous
to rely on how these operators behave with negative numbers because Python’s
definition—although it is clearly correct in mathematical terms—differs from how
remainders are defined in other languages. If you write a Python program that relies
on this behavior, it will be hard to translate that program into a language that uses a
different interpretation.

6 Introducing Python

Mixing types in an expression
Python allows you to mix integers and floating-point numbers freely in an expression.
If you do so, the type of the result depends both on the operator and the types of the
values to which it applies, which are called its operands. For almost all of Python’s
operators, the result is an integer if both operands are integers and a floating-point
number if either or both of its operands is floating-point. Thus, evaluating the
expression

17 + 25

produces the integer 42. By contrast, the expression

7.5 - 4.5

produces the floating-point value 3.0, even though the result is a whole number.

There are two exceptions to Python’s standard rule for combining types. The /
operator, which performs exact division, always returns a floating-point result, even
if both operands are integers. The ** operator is a bit more complicated. The result
is an integer if the left operand is an integer and the right operand is a nonnegative
integer. In any other case, the result is a floating-point value. For example, the
expression

2 ** 10

calculates 210 and therefore produces the integer 1024. The expression

2 ** -1

calculates 2–1, which is the floating-point number 0.5.

Precedence
Following the conventions of standard mathematics, multiplication, division, and
remainder are performed before addition and subtraction, although you can use
parentheses to change the evaluation order. For example, if you want to average the
numbers 4 and 7, you can enter the following expression into IDLE:

If you leave out the parentheses, Python first divides 7 by 2 and then adds 4 and 3.5
to produce the value 7.5, as follows:

1.2 Numeric data 7

The order in which Python evaluates the operators in an expression is governed
by their precedence, which is a measure of how tightly each operator binds to its
operands. If two operators compete for the same operand, the one with higher
precedence is applied first. If two operators have the same precedence, they are
applied from left to right. The only exception is the exponentiation operator **,
which is applied from right to left. Computer scientists use the term associativity to
indicate whether an operator groups to the left or to the right. Most operators in
Python are left-associative, which means that the leftmost operator is evaluated first.
In Python, the only exception to this rule is the ** operator, which is right-associative
and groups from right to left.

Figure 1-1 shows a complete precedence table for the Python operators, many of
which you will have little or no occasion to use. As additional operators are
introduced in this book, you can look them up in this table to see where they fit in the
precedence hierarchy. Since the purpose of the precedence rules is to ensure that
Python expressions obey the same rules as their mathematical counterparts, you can
usually rely on your intuition. Moreover, if you are ever in any doubt, you can always
include parentheses to make the order of operations explicit.

2.1 Boolean data 37

2.1 Boolean data
In Python, you express conditions by constructing expressions whose values are
either true or false. Such expressions are called Boolean expressions, after the
English mathematician George Boole, who developed an algebraic approach for
working with data of this type. Boolean values are represented in Python using a
built-in type whose domain consists of exactly two values: True and False.

Python defines several operators that work with Boolean values. These operators
fall into two classes—relational operators and logical operators—as described in the
next two sections.

Relational operators
The simplest questions you can ask in Python are those that compare two data values.
You might want, for example, to determine whether two values are equal or whether
one is greater than or smaller than another. Traditional mathematics uses the
operators =, ≠, <, >, ≤, and ≥ to signify the relationships equal to, not equal to, less
than, greater than, less than or equal to, and greater than or equal to, respectively.
Because several of these symbols don’t appear on a standard keyboard, Python
represents these operators in a slightly different form, which uses the following
character combinations in place of the usual mathematical symbols:

== Equal to
!= Not equal to
< Less than
> Greater than
<= Less than or equal to
>= Greater than or equal to

Collectively, these operators are called relational operators because they test the
relationship between two values. Like the arithmetic operators introduced in Chapter
1, relational operators appear between the two values to which they apply. For
example, if you need to check whether the value of x is less than 0, you can use the
expression x < 0.

Logical operators
In addition to the relational operators, which take values of any type and produce
Boolean results, Python defines three operators that take Boolean operands and
combine them to form other Boolean values:

not Logical not (True if the following operand is False)
and Logical and (True if both operands are True)
or Logical or (True if either or both operands are True)

George Boole

38 Control Statements

These operators are called logical operators and are listed in decreasing order of
precedence.

Although the operators and, or, and not correspond to the English words and, or,
and not, it is important to remember that English is somewhat imprecise when it
comes to logic. To avoid that imprecision, it helps to think of these operators in a
more formal, mathematical way. Logicians define these operators using truth tables,
which show how the value of a Boolean expression changes as the values of its
operands change. For example, the truth table for the and operator, given Boolean
values p and q, is

The last column of the table indicates the value of the Boolean expression p and q,
given the individual values of the Boolean variables p and q shown in the first two
columns. Thus, the first line in the truth table shows that when p is False and q is
False, the value of the expression p and q is also False.

The truth table for or is

Even though the or operator corresponds to the English word or, it does not indicate
one or the other, as it often does in English, but instead indicates either or both, which
is its mathematical meaning.

The not operator has the following simple truth table:

If you need to determine how a more complex logical expression operates, you can
break it down into these primitive operations and build up a truth table for the
individual pieces of the expression.

2.1 Boolean data 39

In most cases, logical expressions are not so complicated that you need a truth
table to figure them out. The only case that often causes confusion is when the not
operator comes up in conjunction with and or or. When English speakers talk about
situations that are not true (as is the case when you work with the not operator), a
statement whose meaning is clear to human listeners is often at odds with
mathematical logic. Whenever you find that you need to express a condition
involving the word not, you should use extra care to avoid errors.

As an example, suppose you wanted to express the idea “x is not equal to either 2
or 3” as part of a program. Just reading from the English version of this conditional
test, new programmers are likely to code this expression as follows:

x != 2 or x != 3

As noted in Chapter 1, this book uses the bug symbol to mark sections of code that
contain deliberate errors. In this case, the problem is that an informal English
translation of the code does not correspond to its interpretation in Python. If you look
at this conditional test from a mathematical point of view, you can see that the
expression is True if either (a) x is not equal to 2 or (b) x is not equal to 3. No matter
what value x has, one of the statements must be True, since, if x is 2, it cannot also
be equal to 3, and vice versa.

To fix this problem, you need to refine your understanding of the English
expression so that it states the condition more precisely. That is, you want the
condition to be True whenever “it is not the case that either x is 2 or x is 3.” You
could translate this expression directly to Python by writing

not (x == 2 or x == 3)

but the resulting expression would be a bit ungainly. The question you really want to
ask is whether both of the following conditions are True:

• x is not equal to 2, and

• x is not equal to 3.

If you think about the question in this form, you can write the test as

x != 2 and x != 3

This simplification is a specific illustration of the following more general relationship
from mathematical logic:

not (p or q) is equivalent to not p and not q

40 Control Statements

for any logical expressions p and q. This transformation rule and its symmetric
counterpart

not (p and q) is equivalent to not p or not q

are called De Morgan’s laws after the British mathematician Augustus De Morgan.
Forgetting to apply these rules and relying instead on the English style of logic can
lead to programming errors that are difficult to find.

Short-circuit evaluation
Python interprets the and and or operators in a way that differs from the interpretation
used in many other programming languages. In the programming language Pascal,
for example, evaluating these operators requires evaluating both halves of the
condition, even when the result can be determined partway through the process.

The designers of Python (or, more accurately, the designers of earlier languages
that influenced Python’s design) took a different approach that is usually more
convenient for programmers. Whenever Python evaluates an expression of the form

exp1 and exp2

or

exp1 or exp2

the individual subexpressions are always evaluated from left to right, and evaluation
ends as soon as the answer can be determined. For example, if exp1 is False in the
expression involving and, there is no need to evaluate exp2 since the final answer will
always be False. Similarly, in the example using or, there is no need to evaluate the
second operand if the first operand is True. This style of evaluation, which stops as
soon as the answer is known, is called short-circuit evaluation.

A primary advantage of short-circuit evaluation is that it allows one condition to
control the execution of a second one. In many situations, the second part of a
compound condition is meaningful only if the first part comes out a certain way. For
example, suppose you want to express the combined condition that (1) the value of
the integer x is nonzero and (2) x divides evenly into y. You can express this
conditional test in Python as

(x != 0) and (y % x == 0)

because the expression y % x is evaluated only if x is nonzero. The corresponding
expression in Pascal fails to generate the desired result, because both parts of the
Pascal condition will always be evaluated. Thus, if x is 0, a Pascal program
containing this expression will end up dividing by 0 even though it appears to have a

Augustus De Morgan

2.1 Boolean data 41

conditional test to check for that case. Conditions that protect against evaluation
errors in subsequent parts of a compound condition, such as the conditional test

(x != 0)

in the preceding example, are called guards.

Avoiding fuzzy standards of truth
In the programs included in this book, every conditional test produces a Boolean
value, which means that it will always be either True or False. Unfortunately, the
Python language is rather less disciplined on this point. Python defines the following
values (a couple of which you have not yet seen) to be falsy, presumably to imply
that they are like the legitimate Boolean value False:

False, 0, None, math.nan, and any sequence of length 0 including ""

Conversely, Python defines any other value to be truthy. In any conditional context,
any “falsy” value is treated as if it were the value False; any “truthy” value is treated
as if it were the value True.

The complexity of this situation is increased further by the fact that the and and
or operators are implemented so that they allow operands to be of any type. When
Python evaluates a sequence of expressions joined together by the and operator, it
returns the first falsy value in the sequence, so that the expression

0 and True

returns the integer 0, because 0 is falsy and thus determines the value of the entire
expression. Conversely, a sequence of expressions joined together by the or operator
returns the first truthy value in the sequence.

Overly clever programmers will find uses for Python’s rather convoluted
interpretation of Boolean values. If, however, you want to write programs that are
easy to read and maintain, you should avoid relying on these fuzzy definitions of truth
and falsity and make sure—as this book does—that every test produces a legitimate
Boolean value. In his book, JavaScript: The Good Parts,Douglas Crockford lists the
“surprisingly large number of falsy values” in his appendix on the “awful parts” of
JavaScript. That feature is no less awful in Python. But you might also take the
following advice from a somewhat older source:

Let what you say be simply “Yes” or “No”; anything more than this comes
from evil.

—Matthew 5:37, The New English Bible

226 Strings

Repeating a string
In Python, you can use the * operator to specify a string composed by concatenating
multiple copies of a shorter string. For example, the expression

"ab" * 3

returns the six-character string "ababab". Python’s use of the * operator seems
appropriate, not only because it suggests multiplicity but also because it corresponds
to the mathematical definition of multiplication as repeated addition, as follows:

"ab" * 3 is the same as "ab" + "ab" + "ab"

As it does in arithmetic expressions, the * operator takes precedence over the +
operator, so that the expression

"Rose" + " is a rose" * 3 + "."

performs the * operator first and therefore returns the string

"Rose is a rose is a rose is a rose."

This sentence appears in Gertrude Stein’s poem “Sacred Emily” from 1913.

Selecting an individual character
You can select an individual character from a Python string by enclosing its index in
square brackets. Character positions in a string are numbered starting from 0. For
example, the characters in the constant ALPHABET defined on the previous page are
numbered as in the following diagram:

The expression ALPHABET[10], for example, is the one-character string "K".

It is often useful, however, to specify a character by indicating how far that
character is from the end of the string. Python allows a string index to be negative, in
which case the position is determined by counting backwards from the end. The
characters in ALPHABET can therefore also be numbered like this:

Using this numbering scheme, the expression ALPHABET[-3] selects the third
character from the end, or "X".

7.2 String functions and operators 227

Negative index numbers are never necessary but in some cases turn out to be
convenient. In particular, it is more concise to select the last character in the string s
by writing s[-1] than the longer and less evocative s[len(s) - 1].

Slicing
While concatenation makes longer strings from shorter pieces, you often need to do
the reverse: separate a string into the shorter pieces it contains. A string that is part
of a longer string is called a substring. Python makes it easy and convenient to extract
substrings by extending the square-bracket notation for character selection so that you
can specify not only a single index position but also a range of index positions
marking the boundaries of a substring. In Python, using square brackets to select a
range of characters is called slicing.

In its simplest form, a slice in Python is written using two indices separated by a
colon inside the square brackets, like this:

str[start:limit]

As with the range function defined in Chapter 2, the index expressions inside the
square brackets specify a half-open interval in the sense that the index range includes
start but stops just before limit. Thus, the expression

ALPHABET[1:4]

returns the three-character substring "BCD", which starts at index position 1 and ends
just before index position 4. Similarly, the expression

ALPHABET[1:-1]

returns the 24-character substring "BCDEFGHIJKLMNOPQRSTUVWXY", which stops just
short of the index position indicated by –1, which uses negative indexing to specify
the last character in the string.

Python allows you to leave out the index expressions on either side of the colon.
If the first index is missing, it is assumed to be the beginning of the string, so that

ALPHABET[:5]

selects the substring "ABCDE" consisting of the first five characters in ALPHABET. If
the second expression is missing, it is taken to be the length of the string. Thus,

ALPHABET[13:]

selects the substring "NOPQRSTUVWXYZ", which contains the characters from index
position 13 up to the end of the string.

228 Strings

The square-bracket syntax also accepts an optional third component, as follows:

str[start:limit:stride]

When the stride component appears, it indicates the distance between characters
chosen for inclusion in the substring. For example, the expression

ALPHABET[9:20:5]

selects characters from ALPHABET starting at position 9, ending before position 20,
and moving ahead five characters on each stride. This expression therefore selects
the characters in index positions 9, 14, and 19 to produce the string "JOT". The
expression

ALPHABET[::2]

uses the default values for start and limit but uses a stride of 2 to select every other
character from ALPHABET, which produces the string "ACEGIKMOQSUWY".

As with the built-in range function, the stride component can be negative, in
which case the characters are selected by counting backwards through the string.
When the stride value is negative, the start component defaults to the last character
in the string, and the limit component defaults to the beginning of the string. For
example, the expression

ALPHABET[::-1]

returns the characters in ALPHABET, chosen from back to front to produce the
26-character string "ZYXWVUTSRQPONMLKJIHGFEDCBA".

Programmers entranced by Python’s particularly succinct style of expression are
often tempted to use this form of slicing to reverse a string. Doing so, however, makes
the resulting program difficult to follow for programmers unfamiliar with this
Python-specific idiom. One way to restore the desired readability is to embed this
operation in a function whose name makes the effect of the operation clear, like this:

def reverse_string(s):
return s[::-1]

Although some readers may be mystified as to how this implementation achieves the
desired effect, those readers can use the name of the function to understand the
program on a more holistic level.

7.3 Common string patterns 229

7.3 Common string patterns
Although section 7.2 gives you a sense of what string operators Python offers, the
discussion gives you little guidance as to how you can use these operators most
effectively. When you are learning to program, it is often easier to ignore as many
details as possible and instead write your programs by relying on code patterns that
implement common operations. The two most important string patterns are iterating
through the characters in a string and growing a string by concatenation. The sections
that follow describe these patterns.

Iterating through the characters in a string
When you work with strings, one of the most important patterns involves iterating
through the characters in a string. In its simplest form, which you have already seen
in Chapter 1, iterating through the characters in a string requires the following code:

for ch in s:
. . . body of loop that uses the character ch . . .

On each loop cycle, the variable ch is bound to a one-character string chosen from
successive index positions of the string s. The body of the loop then uses that
character to perform some computation. You can, for example, count the number of
spaces in a string using the following function:

def count_spaces(s):
ns = 0
for ch in s:

if ch == " ":
ns += 1

return ns

Growing a string through concatenation
The other string pattern that is important to memorize involves creating a new string
one character at a time. The details of the loop depend on the application, but the
general pattern for creating a string by concatenation looks like this:

result = ""
for whatever loop header line fits the application:

result += the next piece of the result

For example, the n_copies function returns a string consisting of n copies of s,
achieving the effect of the expression s * n without using the * operator:

230 Strings

def n_copies(n, s):
result = ""
for i in range(n):

result += s
return result

Combining the iteration and concatenation patterns
Many string-processing functions use the iteration and concatenation patterns
together. For example, the following function returns a copy of the string s with all
spaces removed:

def remove_spaces(s):
result = ""
for ch in s:

if ch != " ":
result += ch

return result

As a second example, the following function offers another strategy—arguably
more readable but certainly less efficient—for implementing the reverse_string
function first defined on page 228:

def reverse_string(s):
result = ""
for ch in s:

result = ch + result
return result

This implementation builds up the reversed string by concatenating each character
onto the front of the existing result. For example, calling reverse("stressed")

assigns the following values to result as it goes through the for loop:

""
"s"
"ts"
"rts"
"erts"
"serts"
"sserts"
"esserts"
"desserts"

2.2 The if statement 43

breaks, Python uses that spacing to define the hierarchical structure of a program. In
Python, a line break ordinarily signals the end of a statement. Because the return
statement includes a Boolean expression that doesn’t fit comfortably on a single line,
you need to find some way to let the expression extend across more than one line.
This example solves the problem by preceding the line break in the middle of the
expression by a backward slash (\), which causes Python to treat the following line
as part of this one. Python also ignores any line breaks that occur within parentheses,
square brackets, or curly braces, but that rule doesn’t apply in this example as it
appears. You will have many opportunities to see applications of this second rule,
which removes the need for the line-continuation character.

2.2 The if statement
The simplest way to express conditional execution in Python is by using the if

statement, which comes in three forms, as shown in the syntax boxes on the left. The
first form of the if statement is useful when you want to perform an action only under
certain conditions. The second is appropriate when you need to choose between two
alternative courses of action. The third, which can contain any number of elif
clauses, makes sense if you need to choose among several different courses of action.

The condition component of these templates is a Boolean expression, as defined
in the preceding section. This Boolean expression can be a simple comparison, a
logical expression involving the and, or, and not operators, or a call to a predicate
function. For example, if you want to test whether the number stored in year

corresponds to a leap year, you can use the following if statement, which calls the
is_leap_year function defined on the preceding page:

if is_leap_year(year):

In the first form of the if statement, Python executes the block of statements only
if the conditional test evaluates to True. If the conditional test is False, Python skips
the body of the if statement entirely. In the second form, Python executes the first
block of statements if the condition is True and the second if the condition is False.
In the third form, Python evaluates each of the conditions in turn and executes the
statements associated with the first condition that evaluates to True. If none of the
conditions apply, Python executes the statements associated with the else keyword.

You can use the if statement to implement your own versions of Python’s built-in
functions. For example, you can implement abs—at least for integers and
floating-point numbers—as follows:

44 Control Statements

def abs(x):
if x < 0:

return -x
else:

return x

Similarly, you can implement max for two arguments like this:

def max(x, y):
if x > y:

return x
else:

return y

As a third example, you can use the following definition to implement sign(x),
which returns –1, 0, or 1, depending on the sign of x:

def sign(x):
if x < 0:

return -1
elif x == 0:

return 0
else:

return 1

Choosing which form of the if statement to use requires you to think about the
structure of the problem. You use the simple if statement when the problem requires
code to be executed only if a particular condition applies. You use the if-else form
for situations in which the program must choose between two independent sets of
actions. You can often make this decision based on how you would describe the
problem in English. If that description contains the word otherwise or some similar
expression, there is a good chance that you’ll need the if-else form. If the English
description conveys no such notion, the simple form of the if statement is probably
sufficient. Finally, you use the if-elif-else form to express a choice among several
different options.

2.3 The while statement
The simplest iterative construct is the while statement, which repeatedly executes a
simple statement or block until the conditional expression becomes False. The
template for the while statement appears in the syntax box on the right. The entire
statement, including both the while control line itself and the statements enclosed
within the body, constitutes a while loop. When the program executes a while

statement, it first evaluates the conditional expression to see if it is True or False. If
the condition is False, the loop terminates and the program continues with the next

50 Control Statements

2.4 The for statement
The most important control statement in Python is the for statement, which is
typically used in situations in which you know how many cycles the loop will run
before it begins. The general form of the for statement appears in the syntax box on
the left. When Python encounters a loop of this sort, it executes the statement in the
body with the variable indicated by the placeholder var set to each element in the
collection of values specified by iterable. Python uses the term iterable to specify a
data value that supports iteration, which is the formal term computer scientists use
for the process of looping through a collection one value at a time

Iterating over a range of integers
One of the most common uses of the for statement is to cycle through a range of
integers. In this case, the iterable placeholder in the for loop paradigm consists of a
call to the built-in function range, which returns an iterable value whose elements
are the desired integers. The for loop then executes one cycle for each value.

2.4 The for statement 51

The range function offers several different patterns that give you considerable
control over the order in which the for loop processes the elements. These patterns
are determined by the number of arguments, as follows:

• If you call range with one argument, as in range(n), the result generates a
sequence of n values beginning with 0 and extending up to the value n – 1.

• If you call range with two arguments in the form range(start, limit), the result
generates a sequence beginning with start and continuing up to but not including
the value of limit.

• If you call range with three arguments in the form range(start, limit, step), the
result generates a sequence beginning with start and then counts in increments of
step up to but not including limit. If the value of step is negative, the sequence
begins with start and then counts backwards down to but not including limit.

Figure 2-3 illustrates each of these argument patterns in the context of a for loop that
displays each of the values in the range.

The variable that appears in the for loop pattern is called an index variable. In
each of the examples in Figure 2-3, the index variable is named i. Although using
single-letter names can sometimes make programs more difficult to understand, using
i as an index variable follows a well-established programming convention. Just as
the single-letter variables names x and y are perfectly appropriate if they refer to
coordinate values, programmers immediately recognize the variable name i as a loop
index that cycles through a sequence of integers.

52 Control Statements

The last example in Figure 2-3 shows that you can use the range function to count
backwards. You could use this feature to write a function that simulates a countdown
from the early days of the space program:

def countdown(n):
for t in range(n, -1, -1):

print(t)

Calling countdown(10) produces the following output on the console:

The countdown function also demonstrates that any variable can be used as an index
variable. In this case, the variable is called t, presumably because that is traditional
for a rocket countdown, as in the phrase “T minus 10 seconds and counting.”

The factorial function
The factorial of a nonnegative integer n, which is traditionally written as n! in
mathematics, is defined to be the product of the integers between 1 and n. The first
ten factorials are shown in the following table:

0! = 1 (by definition)
1! = 1 = 1
2! = 2 = 1 ´ 2
3! = 6 = 1 ´ 2 ´ 3
4! = 24 = 1 ´ 2 ´ 3 ´ 4
5! = 120 = 1 ´ 2 ´ 3 ´ 4 ´ 5
6! = 720 = 1 ´ 2 ´ 3 ´ 4 ´ 5 ´ 6
7! = 5040 = 1 ´ 2 ´ 3 ´ 4 ´ 5 ´ 6 ´ 7
8! = 40320 = 1 ´ 2 ´ 3 ´ 4 ´ 5 ´ 6 ´ 7 ´ 8
9! = 362880 = 1 ´ 2 ´ 3 ´ 4 ´ 5 ´ 6 ´ 7 ´ 8 ´ 9

Factorials have extensive applications in statistics, combinatorial mathematics,
and computer science. A function to compute factorials is therefore a useful tool for
solving problems in those domains. You can implement a function fact(n) by
initializing a variable called result to 1 and then multiplying result by each of the
integers between 1 and n, inclusive. The resulting code looks like this:

2.4 The for statement 53

def fact(n):
result = 1
for i in range(1, n + 1):

result *= i
return result

Note that the for loop specifies the upper limit of the range as n + 1 to ensure that the
value n is included in the product.

The FactorialTable.py program in Figure 2-4 on the next page displays a list
of the factorials starting at LOWER_LIMIT and extending up to but not including
UPPER_LIMIT, as illustrated by the following sample run:

The code for this program is divided into multiple modules. The main program is
stored in the FactorialTable.py module shown at the top of Figure 2-4. The code
in FactorialTable.py produces the table shown in the sample run but relies on a
separate factorial.py model for the fact function and an alignment.py module
(which you will have a chance to write in exercise 9) for the align_right function
defined on page 47.

The module that together define the FactorialTable application play slightly
different roles. The FactorialTable.py module defines a Python program that
delivers output to the user through the use of print statements. The factorial.py
and the as-yet-unwritten alignment.pymodules each represent a Python library that
performs a service for the main program without communicating directly with the
user. The functions in the library modules communicate with their callers by taking
arguments as input and returning results.

The names of these modules reflect a convention that applies throughout this text.
Modules that are intended to be run as programs use camel-case names beginning
with an uppercase letter, as illustrated by the module name FactorialTable.py.
Modules intended to be used as libraries, such as factorial.py and alignment.py
in this chapter or like the temperature.py module from Chapter 1 have names
written entirely in lowercase letters.

5.1 A quick review of functions 139

The syntax of a function definition
A typical function definition has the form shown in the syntax box on the right. The
name component of this pattern indicates the function name, parameters is the list of
parameter names that receive the values of the arguments, and statements represents
the body of the function. Functions that return a value to the caller must contain at
least one return statement that specifies the value of the function, as illustrated in
the second syntax box.

These syntactic patterns are illustrated in the definition of the max function from
Chapter 2, which looks like this:

def max(x, y):
if x > y:

return x
else:

return y

This function has the name max and takes two parameters, x and y. The statements
in the body decide which of these two values is larger and then return that value.

Functions, however, are often called simply for their effect and need not return a
value. For example, the Python functions that implement complete programs don’t
include a return statement. Some languages distinguish a function that returns a
value from one that doesn’t by calling the latter a procedure. Python uses the term
function for both types. This terminology is technically accurate because Python
functions always return a value, which is the Python constant None if no return

statement appears.

Parameter passing
In the function calls you have seen so far, the arguments supplied by the caller are
copied to the parameter variables in the order in which they appear. The first
argument is assigned to the first parameter variable, the second argument to the
second parameter variable, and so on. Parameters passed by their order in the
argument list are called positional parameters.

When you use positional parameters, the variable names in the caller and the called
function are completely irrelevant to the process by which parameter values are
assigned. There may well be a variable named x in both the calling function and in
the parameter list for the function being called. That reuse of the same name,
however, is merely a coincidence. Local variable names and parameter names are
visible only inside the function in which their declarations appear.

140 Functions

Python allows a function to specify a value for a parameter that the caller fails to
supply. Such parameters are called default parameters. Default parameters appear
in the function header line with an equal sign and a default value. For example, the
following function displays n consecutive integers, beginning with the value start
if two arguments are supplied and with the value 1 if the second argument is missing:

def count(n, start=1):
for i in range(n):

print(start + i)

The following IDLE session illustrates the operation of count, both when it is given
a second argument and when it is not:

Python also allows callers to pass arguments by including the parameter name and
an equal sign in the function call. For example, if you cannot remember the order of
parameters for the count function, you can write the arguments in either order by
including the parameter names, as follows:

Parameters identified by name are called keyword parameters, even though the
names are not in any way related to Python keywords like def or while.

Default and keyword parameters are useful in designing library functions that are
easy to use. The section entitled “Designing your own libraries” later in this chapter
includes several examples of each of these styles.

5.2 The mechanics of function calls 141

5.2 The mechanics of function calls
Although you can certainly get by with an intuitive understanding of how the
function-calling process works, it helps to understand precisely what happens when
one function calls another in Python. The sections that follow describe the process in
detail and then walk you through a simple example.

The steps in calling a function
Whenever a function call occurs, Python executes the following operations:

1. The calling function computes values for each argument using the bindings of
local variables in its own context. Because the arguments are expressions, this
computation can involve operators and other functions; the calling function
evaluates these expressions before execution of the new function begins.

2. The system creates new space for all the local variables required by the new
function, including the variables in the parameter list. These variables are
allocated together in a block, which is called a stack frame.

3. Each positional argument is copied into the corresponding parameter variable.

4. All keyword arguments are copied to the parameter with the same name.

5. For parameters that include default values, Python assigns those values to any
arguments that are still unspecified. If any parameters are still unassigned after
this step, Python reports an error.

6. The statements in the function body are executed until the program encounters a
return statement or there are no more statements to execute.

7. The value of the return expression, if any, is evaluated and returned as the value
of the function.

8. The stack frame created for this function call is discarded. In the process, all
local variables disappear.

9. The calling program continues, with the returned value substituted in place of the
call. The point to which the function returns is called the return address.

Although this process may seem to make at least some sense, you probably need
to work through an example or two before you understand it fully. Reading through
the example in the next section will give you some insight into the process, but it will
be even more helpful to take one of your own programs and walk through it at the
same level of detail. And while you can trace through a program on paper or a
whiteboard, it may be best to get yourself a supply of 3´5 index cards and then use a
card to represent each stack frame. The advantage of the index-card model is that
you can create a stack of index cards that closely models the operation of the
computer. Calling a function adds a card; returning from the function removes it.

142 Functions

The combinations function
The function-calling process is most easily illustrated in the context of a specific
example. Suppose that you have a collection of six coins, which in the United States
might be a penny, a nickel, a dime, a quarter, a half-dollar, and a dollar. Given those
six coins, how many ways are there to choose two of them? As you can see from the
full enumeration of the possibilities in Figure 5-1, the answer is 15. However, as a
computer scientist, you should immediately think about the more general question:
given a set containing n distinct elements, how many ways can you choose a subset
with k elements? The answer to that question is computed by the
combinations function C(n, k), which is defined as

C(n, k) =

where the exclamation point indicates the factorial function, which you saw in
Chapter 2. The code to compute the combinations function in Python appears in
Figure 5-2.

5.2 The mechanics of function calls 143

As you can see from Figure 5-2, the combinations.py file contains two
functions. The combinations function computes the value of C(n, k), and the
now-familiar fact function computes factorials. An IDLE session just before
making the call to combinations(6, 2) might look like this:

Tracing the combinations function
While the combinations function is interesting in its own right, the purpose of the
current example is to illustrate the steps involved in calling functions. When the user
enters a function call in the IDLEwindow, the Python interpreter invokes the standard
steps in the function-calling process.

As always, the first step is to evaluate the arguments in the current context. In this
example, the arguments are the numbers 6 and 2, so the evaluation process simply
keeps track of these two values.

144 Functions

The second step is to create a frame for the combinations function that contains
space for the variables that are stored as part of that frame, which are the parameters
and any variables that appear in declarations within the function. The combinations
function has two positional parameters and no local variables, so the frame only
requires enough space for the parameter variables n and k. After the Python
interpreter creates the frame, it copies the argument values into these variables in
order. Thus, the parameter variable n is initialized to 6, and the parameter variable k
is initialized to 2.

In the diagrams in this book, each stack frame appears as a rectangle surrounded
by a double line. Each stack-frame diagram shows the code for the function along
with a pointing-hand icon that makes it easy to keep track of the current execution
point. The frame also contains labeled boxes for each of the local variables. The
stack frame for the combinations function therefore looks like this after the
parameters have been initialized but before execution of the function begins:

To compute the value of the combinations function, the program must make
three calls to the function fact. In Python, function calls are evaluated from left to
right, so the first call is the one to fact(n), as follows:

To evaluate this function, the systemmust create yet another stack frame, this time
for the function fact with an argument value of 6. The frame for fact has both
parameters and local variables. The parameter n is initialized to the value of the
calling argument and therefore has the value 6. The two local variables, i and
result, have not yet been initialized, which is indicated in stack diagrams using an
empty box. The new frame for fact gets stacked on top of the old one, which allows
the Python interpreter to remember the values in the earlier stack frame, even though
they are not currently visible. The situation after creating the new frame and
initializing the parameters looks like this:

5.2 The mechanics of function calls 145

The system then executes the statements in the function fact. In this instance,
the body of the for loop is executed six times. On each cycle, the value of result
is multiplied by the loop index i, which means that it will eventually hold the value
720 (1´2´3´4´5´6 or 6!). When the program reaches the return statement, the
stack frame looks like this:

Returning from a function involves copying the value of the return expression
(in this case the local variable result), to the point at which the call occurred. The
frame for fact is then discarded, which leads to the following configuration:

The next step in the process is to make a second call to fact, this time with the
argument k. In the calling frame, k has the value 2. That value is then used to
initialize the parameter n in the new stack frame, as follows:

The computation of fact(2) is easier to perform in one’s head than the earlier
call to fact(6). This time around, the value of result will be 2, which is then
returned to the calling frame, like this:

146 Functions

The code for combinations makes one more call to fact, this time with the
argument n - k. Evaluating this call therefore creates a new stack frame with n equal
to 4:

The value of fact(4) is 1´2´3´4, or 24. When this call returns, the system is
able to fill in the last of the missing values in the calculation, as follows:

The computer then divides 720 by the product of 2 and 24 to get the answer 15. This
value is returned to the Python interpreter running in the IDLE console window. The
interpreter prints that value on the console, like this:

5.3 Libraries and interfaces
Writing a program to solve a large or difficult problem inevitably forces you to
manage at least some amount of complexity. There are algorithms to design, special
cases to consider, user requirements to meet, and innumerable details to get right. To
make programmingmanageable, youmust reduce the complexity of the programming
process as much as possible. Functions reduce some of the complexity; libraries offer

