
CS 151 Practice Exam 2b Nov 6, 2023

Name:

Please answer the following questions within the space provided on the online template.
Format your solutions as well as you are able within the online text editor. While you
are not required to document your code here, comments may help me to understand
what you were trying to do and thus increase the likelihood of partial credit should
something go wrong. If you get entirely stuck somewhere, explain in words as much as
possible what you would try.

Each question clearly shows the number of points available and should serve as a
rough metric to how much time you should expect to spend on each problem. You can
assume that you can import any of the common libraries we have used throughout the
semester thus far.

The exam is partially open, and thus you are free to utilize:

• The text

• Your notes

• Class slides

• Any past work you have done as part of sections, problem sets, or projects, provided
it has been uploaded, and you access it through GitHub.

• The in-Canvas calculator on problems that offer it.

While you are allowed to use a computer for ease of typing and accessing the above
resources, you are prohibited from accessing and using any editor or terminal to run
your code. Visual Studio Code or any similar editor should never be open on your
system during this exam. Additionally, you are prohibited from accessing outside
internet resources beyond the webpages described above. Your work must be your own
on this exam, and under no conditions should you discuss the exam or ask questions
to anyone but myself. Failure to abide by these rules will be considered a breach of
Willamette’s Honor Code and will result in penalties as set forth by Willamette’s
academic honesty policy.

Please sign and date the below lines to indicate that you have read and
understand these instructions and agree to abide by them. Failure to abide by
the rules will result in a 0 on the test. Good luck!!

Signature Date

1.(10) Tracing Functions
The code below defines three different function definitions:
def puzzle(t):

def mystery (r,x):
x += 1
def enigma(s=0):

return r[s::x]
return enigma

x = 2
y = mystery (t,x=x)
return y(x) + y()

if __name__ == '__main__ ':
print(puzzle(" angriest "))

For each function, every time that function would return a value, indicate what that
value would be. If the function returns multiple times, put each value on a new line, in
the order they would be returned.

puzzle mystery enigma

"gears" enigma "ge"

"ars"

Solution: The trickiest part of this is with myster returning the actual enigma func-
tion, which thus needs to track that the value of x within the surrounding mystery
stack frame was 3.

CS 151 Practice Exam 2b Points on Page: 10

2.(20) Interactive Graphics
In this problem, your mission is to write a program that plays a very simplified version
of the graphical game called “Snake”, which was popular on the first generation of Nokia
phones. When the program begins, there is nothing on the graphics window, but there is
an invisible snake head at the center of the window. In each time step of the animation,
the snake head moves 15 pixels in some direction, leaving behind a 15 × 15 filled square
at the position it just left.
At the beginning of the game, the snake head is moving eastward, so after four time
steps, it will have generated a trail of four squares (which run together on the screen),
like this.

In this implementation of the game, you turn the snake by clicking the mouse. In
this initial situation, with the snake moving horizontally, clicking the mouse above the
current y position of the snake head sends it northward, and clicking below the current
y position would send it south. In this particular example, let’s assume that the player
clicked above the snake head, so that its direction changes to the north. After three
more time steps, the window would look something like this:

When the snake is moving vertically, clicking to the left of the snake head sends it
westward, and clicking to the right sends it eastward. Clicking to the left would therefore
send the snake off to the west, as follows:

CS 151 Practice Exam 2b Points on Page: 20

In the actual game, the player loses if the path of the snake moves outside the window
or closses its own path. For this problem, you can ignore the problem of stopping and
just get the motion working.
While the program may seem complicated, there are not that many pieces which you
need to get it working. Here are a few general hints or things to keep in mind as you
get started:

• You need to keep track of three things: the x and y positions of the snake head,
and some indication of what direction the snake is currently moving (North, South,
East or West).

• The function that executes each time step must create a new black square whose
center is at the current position, and then move the head on to the next square by
updating the coordinates as appropriate to the current direction.

• The listener method that responds to mouse clicks has to look at the current position
and direction and then use those together with the mouse click location to determine
how to update the direction.

• Remember that you don’t need to check whether the snake remains on the window
or crosses its own path. You can implement those features on your own time after
the exam if you really want!

Solution: One possible solution:
SIZE = 15
WIDTH = 20* SIZE
HEIGHT = 10* SIZE

def step ():
Create rect at current position
rect = GRect(gw.head_x - SIZE /2,

gw.head_y - SIZE /2,
SIZE , SIZE)

rect. set_filled (True)
gw.add(rect)
Advance head
if gw. direction == 'E':

gw.head_x += SIZE
elif gw. direction == 'W':

gw.head_x -= SIZE
elif gw. direction == 'N':

gw.head_y -= SIZE
elif gw. direction == 'S':

gw.head_y += SIZE

CS 151 Practice Exam 2b Points on Page: 0

def click_action (e):
mx = e.get_x ()
my = e.get_y ()
if gw. direction in 'NS':

if mx < gw.head_x:
gw. direction = 'W'

else:
gw. direction = 'E'

else:
if my < gw.head_y:

gw. direction = 'N'
else:

gw. direction = 'S'

gw = GWindow (WIDTH , HEIGHT)
gw.head_x = WIDTH / 2
gw.head_y = HEIGHT / 2
gw. direction = 'E'
gw. set_interval (step , 200)
gw. add_event_listener ("click", click_action)

CS 151 Practice Exam 2b Points on Page: 0

3.(20) Working with Arrays
Write a function called rotate_array that takes a list and an integer as two arguments.
The function should have the effect of shifting every element of the list the integer
number of positions. Positive integers should result in the elements being shifted toward
the beginning of the list, whereas negative integers should result in the elements being
shifted towards the end. Elements shifted off either end of the list should wrap around
and reappear on the other end of the list. For example, if the array digits has the
contents:

digits

0 1 2 3 4 5 6 7 8 9

then calling rotate_array(digits, 1) would shift each of the values one position to
the left and move the first value to the end:

digits

1 2 3 4 5 6 7 8 9 0

Calling rotate_array(digits, -3) however would shift all the elements 3 positions to
the right:

digits

7 8 9 0 1 2 3 4 5 6

Note that although the example array here just had integers as its elements, your function
should properly shift any type of data the necessary number of positions. Also note that
the function should shift the elements in place, it should not return a new list.

Solution: I found it useful here to figure out how to shift things 1 position in either
direction, and then just use a loop to loop the necessary number of times. Other
solutions certainly exist.
def rotate_array (array , n):

def roll_forward (array):
tmp = array [0]
for i in range(len(array) -1):

array[i] = array[i+1]
array [-1] = tmp

CS 151 Practice Exam 2b Points on Page: 20

def roll_backward (array):
tmp = array [-1]
for i in range(len(array)-1, 0, -1):

array[i] = array[i - 1]
array [0] = tmp

for i in range(abs(n)): # need for negatives
if n > 0:

roll_forward (array)
else:

roll_backward (array)

CS 151 Practice Exam 2b Points on Page: 0

