
PS1 Intro to Python CS 151

This problem set has one problem relating to Karel and then two problems concerning
more generic Python programming. All have starting templates included in the repository.
Do not forget to adjust the README to indicate you have completed the assignment before
your final commit!

1. Karel, tired of painting, is thinking more abstractly, and wants to lay out a checkerboard
pattern of beepers inside an empty rectangular world. An example of a before and after
for an 8x8 world is shown below:

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

Before

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

After

This problem has a nice decomposition structure along with some interesting algorithmic
issues. As you think about how you will solve the problem, you should make sure that
your solution works with checkerboards that are different in size from the standard 8x8
checkerboard shown in the example above. Odd-sized checkerboards are trickier, and
you should make sure that your program generates the following pattern in a 5x3 world:

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

1 2 3 4 5

1

2

3

Another special case you need to consider is that of a world which is only one column
wide or one row high. The repository includes several sample worlds for you to test
your program against, including: 1x8.w, 5x3.w, 5x5.w, and 8x1.w. You can safely
assume that Karel always starts in the bottom left corner and facing to the east with an
infinite supply of beepers in its bag. In does not matter where Karel finishes or which



CS 151

specific spaces have beepers, except that the world should be completely checkerboarded.
To get full points on this problem, your program should show clear evidence of how
you decomposed the problem and successfully recreate a checkerboard on any empty
rectangular world.

2. Problem courtesy of Eric Roberts.

It is a beautiful thing, the destruction of words.
—Syme in George Orwell’s 1984

In Orwell’s novel, Syme and his colleagues at the Ministry of Truth are engaged in
simplifying English into a more regular language called Newspeak. As Orwell describes
in his appendix entitled “The Principles of Newspeak,” words can take a variety of
prefixes to eliminate the need for the massive number of words we have in English. For
example, Orwell writes,

Any word—this again applied in principle to every word in the
language—could be negatived by adding the affix un-, or could
be strengthened by the affix plus-, or, for still greater emphasis,
doubleplus-. Thus, for example, uncold meant “warm”, while pluscold
and doublepluscold meant, respectively, “very cold” and “superlatively
cold.”

Define three functions—negate, intensify, and reinforce—that take a string as input
and add the prefixes "un", "plus", and "double" to that string, respectively, returning
the result. For instance, if you were to enter in negate("cold") you should get out the
string "uncold". Below are several more examples of expected input and output. These
are all also printed in the given template so that you can check your code.

negate("cold") → "uncold"
intensify("cold") → "pluscold"

reinforce(intensify("cold")) → "doublepluscold"
reinforce(intensify(negate("good"))) → "doubleplusungood"

3. Write a program that displays the integers between 1 and 100 that are divisible by either
6 or 7 but not both. Your program should print one number on each line. I’m supplying
you a template file, but it is largely empty in this situation, so you have lots of flexibility
in how you want to approach this. Note here that you want to actually print each
number from within the function, you do not want to return them.

Page 2


