
Problem Set 3 Intro to Python CS 151

Question 1 has three parts wherein you are needing to debug and make small fixes to
already existing code. Questions 2 is playing with the random library and loops, while
Question 3 introduces you to mouse-driven events in PGL. Do not forget to adjust the
README to indicate you have completed the assignment before your final commit!

1. You get lots of practice writing your own code in this class. But an equally important,
and sometimes harder, skill is to be able to interpret and troubleshoot code that you
might not have created from scratch. To that end, this problem poses you with 3 different
programs that attempt to solve 3 different goals. Each has several (< 5 or so) mistakes
that are causing it to not perform as desired. Find and fix the broken bits, and upload
the fixed versions back to Github. There are not huge numbers of mistakes here. Most
of the code is good. If you find yourself rewriting large pieces of code, you’ve probably
missed something easier.
(a) Compound interest is a financial concept that generally requires differential equa-

tions to fully model. We can get similar results by simulating the process in Python
though, no differential equations needed (though they are pretty cool. . . )! Suppose
you have a certain amount of money in the bank. Each month, you will earn a
certain amount of interest on that money, depending on the interest rate. Mathe-
matically it looks like

Interest earned = Interest rate × Money in bank

This earned interest is then added to the amount of money you had in the bank.
Score! Suppose though that you are also being a responsible adult and setting aside
of bit of your salary to savings each month as well, which we could describe with

Added savings = Savings rate × Month’s salary

So each month, both of those effects (interest earned and new savings added) are
contributing to increasing the total amount in savings. This program is supposed to
compute, for a given savings rate and salary, how many months of saving it would
take to hit a desired amount of money in savings. It has a few problems though at
the moment, so your task is to fix it. Doing so will also force you to ask yourself
how you could test it to ensure it is working properly. I will give you 2 test cases
below, but you can come up with other easily testable arguments as well to ensure
everything is working.

calc_months_to_savings(1000, 0.01) → 325
calc_months_to_savings(1000, 0.10) → 48

(b) Last week in your small sections you looked at the Collatz sequence, wherein from
some starting point you calculate the next number in the sequence according to:

If the number is even, divide by two
If the number is odd, multiply by 3 and add 1
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And you saw that it always eventually finds its way to be 1. This program focuses
on determining the length of those chains, or how many steps it takes until you get
to 1. In particular, its goal is to find the starting number in a specific range that
results in the longest chain (greatest number of steps to reach 1). Several things
are a bit off though, so again, your goal is to fix it. Similar to the last problem,
there are some very simple tests you can make to help check, but I’ll give you two
other checks below.

find_longest_chain(100) → 118
find_longest_chain(1000) → 178

(c) On Problem Set 2, you estimated the value of π using Leibniz’s sequence. Another,
more visual method of approximating the value of π is to throw darts randomly at
a circular target which is enclosed in a square. All the darts must land within the
square, but only a fraction of the darts will also land within the circle. It turns out
that the ratio of the number of darts that strike the circle over the total number of
thrown darts ends up approximating π

4 ! You can actually see this if you just look
at the ratio of the areas of a circle enscribed in a square:
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This program attempts to approximate π by throwing random darts within the
square and then checking to see if they landed within the radius of the circle. This
can be checked by using the distance formula to find the distance between the center
of the circle and where the dart was placed. If your math is a bit rusty, the distance
formula is:

(distance from center)2 = (xdart − xcent)2 + (ydart − ycent)2

The goal of this program was to not only simulate dart throws to determine the
ratio of hits and thus the value of pi, but also to visualize all the dart locations.
To this end, it endeavors to use PGL to draw the target and each location of a
randomly placed dart. And at the end, it prints the approximate calculated value
of π (rounded to 2 decimals) centered on the window. So the final window upon
running the program might look something like this:
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where red circles are darts that landed within the target circle and black circle are
darts that landed outside. Note that, due to the random nature of this approxima-
tion, your values will certainly vary from what is shown here! In fact, they should
vary from run to run. But if you run it for large enough numbers of darts, the
approximation to π will get better and better. At 5000 darts, things usually end
up within a few hundredths of 3.14.

2. Write a function called consecutive_heads that simulates tossing a coin repeatedly
until the specified number of heads appears in a row. The function should take one
input, which would be the desired number of consecutive heads. Once the number of
specified heads is met, the program should print a line to the console indicating how
many coin tosses were needed, and then return that value (the number of needed coin
tosses). The output might look something like this:

Heads
Heads
Tails
Heads
Heads
Heads
It took 6 tosses to get 3 consecutive heads.

You don’t need to print out each toss, but I think it helps for debugging purposes. Make
sure you include comments and docstrings explaining your code and that you return the
final needed number of tosses.
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3. In the Prob3.py, add code to recreate a cartoon drawing of a face that looks like Fig-
ure 1a. It does not need to be exact, but it should be close.

(a) (b)

Figure 1: Examples of the face when the cursor is at different locations.
(a) here shows the original face before any interactivity has been added,
while (b) shows the face once the callback function has been added and
the cursor is to the lower right.

Once you have this, add a callback function for the "mousemove" event so that the pupils
in the eyes follow the cursor position. For example, if you move the cursor to the lower
right side of the screen, the pupils should shift so that they appear to be looking at that
point, as seen in Figure 1b.
The tricky bit here can be figuring out the geometry to ensure that you move the pupils
a small distance toward the cursor. There are a variety of ways to achieve this, and if
you are feeling good about the math, have at it! If your geometry skills are feeling a
bit rusty though, I’ll provide some images and guidance that will hopefully help. For a
given eye, you will know the position of the eyeball and of the mouse cursor, as I am
showing below.
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d

From that you can determine what the difference is in the x and y positions, which are
denoted ∆x and ∆y in the image. If you just wanted to move the pupil to the location
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of the mouse, you could just move it by those distances in both the x and y and it
would work. But that is not how most people’s eyeballs work! Instead, you want to
move the pupil just a short fixed distance in that direction, which I’m labeling d in the
image above. One way to figure out the x and y pieces of d would be to use trig, but
alternatively, we can do it with ratios and similar triangles! So lets redraw what we
have, but making the triangles more clear.

(x1,y1)

(x2,y2)

∆
y

∆x

√
∆x 2+ ∆y 2

d

dx

d
y

The fundamental idea behind similar triangles is that the ratios of their side lengths
are the same. Thus, if we are comparing the vertical sides to the hypotenuses, we’d get
something like

dy

d
= ∆y√

∆x2 + ∆y2

and by comparing the horizontal sides to the hypotenuses:

dx

d
= ∆x√

∆x2 + ∆y2

Remember that you can calculate ∆x and ∆y and that d is a value you are setting, which
is however far you want the pupil to move towards the mouse. Thus you can compute
what dx and dy are, which are the distances you’ll need to move the pupil away from
the center of the eye. Note that you’ll need to do these calculations within your callback
function, as they need to be recomputed every single time the mouse is moved. And
remember that you’ll need to do the above twice, once for each eye.
Although the difference might appear slight when the cursor is outside the face, it is
important to compute the position of each pupil independently for each eye. If you
move the mouse in between the eyes, for instance, the pupils should point in opposite
directions and make the face appear cross-eyed.
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