Problem Set 4 Intro to Python CS 151

You have three questions to complete this week: one concerning using GPolygon and
GCompound and then two dealing with string manipulations. Do not forget to adjust the
README to indicate you have completed the assignment before your final commit!

1. There is a classic optical illusion that looks like:

with the illusion arising from the fact that it is possible to see the white surfaces as
either the tops or the bottoms of cubes stacked to form a pyramid. We’d like here to
create a “paintbrush” of sorts that would allow you to create pyramids like this or any
other geometric creation you could imagine.

To do so, you should first define a function create_cube to draw a single cube, which
will be returned as a GCompound object. Each cube GCompound is comprised of 3
GPolygons, each with a differently shaded face:

Nl

ey




CS 151

As you are drawing these, it is helpful to know that each edge you draw is always the
same length (shown here as L), and should be 40 pixels. For the colors, you should
actually set the fill colors here, so that you keep the black outline of the poylgon. I have
also added a few extra geometric bits of information to the above image to potentially
help you place the vertices correctly. Remember that both GCompounds and GPolygons
use their own coordinate systems! When you return the final cube GCompound, it should
have the origin placed at the center meeting point of the three polygons.

Once you have your function creating a cube GCompound, and have ensured that it can
be drawn to the screen and looks correct, add one cube to the window. Then set up
an event listener and callback function so that whenever the mouse moves, the cube is
moved to the same location as the mouse. Moving your mouse around the screen should
now cause the cube to follow it. This will serve as our “paintbrush” cursor.

To achieve our “painting” effect, we will add one more mouse event (and corresponding
callback function) when you "mousedown". Whenever you press the mouse down, a new
cube should be created and added to the screen wherever your cursor currently is. Now
you can draw whatever geometric shapes you like! One of my examples looked like below.
The half cube in the upper right was where my cursor was when I left the window to

take the screenshot.

Page 2



CS 151

2. Many people in English-speaking countries have played the Pig Latin game at some
point in their lives. There are other invented “languages” in which words are created
using some simple transformation of English. One such language is called Obenglobish,
in which words are created by adding the letters ob before the vowels (a,e,i,0 and u)
in an English word. For example, under this rule, the word english gets the letters ob
added before the e and the 7, to form obenglobish, which is how the language got its
name.

In official Obenglobish, the ob characters are only add before vowels that are pronounced,
which means that a word like game would become gobame rather than gobamobe since
the final e is silent. While it is impossible to implement this rule perfectly, you can do a
pretty good job by adopting the rule that ob should be added before every vowel in the
word except when:

e the vowel follows another vowel

o the vowel is an e occurring at the end of a word

Write a function to_obenglobish that takes an English word as an argument and returns
its Obenglobish equivalent, using the translation rule given above. For example, your
function should be able to output something similar to below:

>>> print (to_obenglobish("english"))
obenglobish

>>> print (to_obenglobish("gooiest"))
gobooiest

>>> print (to_obenglobish("amaze"))
obamobaze

>>> print (to_obenglobish("rot"))
robot

Don’t forget about decomposition! I found it very useful in this problem to write predi-
cate functions which take care of checking the above special conditions.

Page 3



CS 151

3. A letter-substitution cipher operates by consistently replacing a letter with a correspond-
ing letter from a given key. The key in a letter-substitution cipher is a 26-character string
that shows the enciphered counterpart of each of the 26 letters of the alphabet. For ex-
ample, if both communicating parties chose "QWERTYUIOPASDFGHJKLZXCVBNM" as the key
(unimaginatively chosen by typing the letter keys on the keyboard in order), then that
key would correspond to the following mapping:

ABCDEFGHIJKLMNOPQRSTUVWXYZ
SAAARAREEEE NI RN RN
QWERTYUTOPASDFGHUJKLZXCUVBNHM

Your task here is to write a function encrypt which takes two arguments: the message
to encrypt and the 26-character key, and which returns the encrypted message. Any
capitalized letters should be capitalized in the encrypted message, and lower-case letters
should be lower-case in the encrypted message. Any characters which are not letters
should be unchanged in the encrypted message. For example, with the above key, then
you should be able to get something like:

>>> KEY = "QWERTYUIOPASDFGHJKLZXCVBNM"
>>> print (encrypt ("Squeamish Ossifrage", KEY))
Ljxtqdoli Glloykqut

As a fun aside, the words squeamish ossifrage were part of the solution to a cryptographic
puzzle published in Scientific American. The puzzle was developed by Ron Rivest, Adi
Shamir, and Leonard Adleman, who invented the widely used RSA encryption algorithm,
named from the first letters of their surnames. As some other examples, using the same
key as above, you should be able to get the below output:

>>> print (encrypt("ABC - 123", KEY))

QWE - 123

>>> print (encrypt("Isn't this great?"), KEY)
0l1f'z ziol uktqz?

Note that, although the key is comprised of entirely capitalized letters in the example
here, it does not need to be. So your program should be able to work properly for keys
that are either capitalized or lower-case.

Page 4



