
CS 151 March 2, 2022

Project #2—Wordle!

For the past few semesters, the second assignment was to implement a solver for a word
puzzle called Spelling Bee published by The New York Times. While Spelling Bee remains
a popular game, it has recently been eclipsed by a new game called Wordle, which has
rapidly gained such a large and devoted following that the Times bought the game from
Josh Wardle for an undisclosed sum “in the low seven figures.” Given Wordle’s enormous
popularity, we thought it would be fun to implement that game.

The starter folder
As with Breakout, you don’t have to implement the Wordle project entirely from scratch.
The Project1Starter.zip file includes the following files:

Wordle.py The starter file for the project, which uses the WordleGraphics

module to display the board.
WordleGraphics.py This module exports the WordleGraphics class, which is

responsible for all the graphics operations. It also exports the
constants N_ROWS and N_COLS, which have the values 6 and 5.

WordleDictionary.py This module exports the constant FIVE_LETTER_WORDS, which
contains a list of the five-letter words that the puzzle allows.

Unless you are implementing extensions, the only file you need to change is Wordle.py,

which imports the resources it needs from the other modules. The starter version of
Wordle.py appears in Figure 1.

Figure 1. Starter file for Wordle

File: Wordle.py

"""
This module is the starter file for the Wordle assignment.
BE SURE TO UPDATE THIS COMMENT WHEN YOU WRITE THE CODE.
"""

from WordleDictionary import FIVE_LETTER_WORDS
from WordleGraphics import WordleGWindow, N_ROWS, N_COLS
import random

def wordle():
 gw = WordleGWindow()
 # Fill in the rest of this program

Startup code

if __name__ == "__main__":
 wordle()

 – 2 –

Figure 2. Running the starter program

When you download the starter folder, a lot of the code is already running because we’ve
implemented all the graphics for you. Running the starter program creates a window,
draws the letter boxes, and creates the keyboard at the bottom of the window. You can
even type in letters either by hitting keys on the keyboard or clicking the keys on the screen,
just as you can when you are playing the online version. Figure 2, for example, shows both
the initial screen and the screen you get after typing in the five letters in the useful starting
word RATES, which includes five of the most common letters.

Unfortunately, that’s all the program does at this point. It doesn’t actually let you play
the Wordle game. That’s your job. But first, it is worth spending a bit of time reviewing
the rules for Wordle, in case you’ve somehow managed to miss this craze.

Playing Wordle
The object of the Wordle puzzle is to figure out the hidden word for the day using no more
than six guesses. When you type in a word and then hit the RETURN or ENTER key, the
website gives you information about how close your guess is by coloring the background
of the letters. For every letter in your guess that is in its correct position, Wordle colors
the background green. For every letter that appears in the word but is not in the correct
position, Wordle colors the background yellow. All letters in the guess that don’t appear
in the word are colored gray.

For example, suppose that the hidden word for the day was RELIC, and your first guess
was RATES as in the Figure 2 example. The R is in the correct position, and the word
contains an E, but not in the position you guessed. The hidden word does not contain any

 – 3 –

of the letters T, E, and S. Wordle reports that information by changing the background
colors of the squares like this:

Even though you know the position of the R, it doesn’t make sense to guess more words
beginning with R at this point because doing so gives you no new information. Suppose
that you tried guessing the word LINGO, which contains five new letters, two of which
appear in the word, but none of which are correctly positioned. Wordle responds by
coloring the letter squares in your second guess as follows:

Putting these two clues together means that you know that the word begins with an R,
contains the letters E, L, and I in some order other than the one you guessed, and that the
letters A, T, S, N, G, and O do not appear anywhere in the word. These answers give you
an enormous amount of information. If you think carefully about it, you might find the
word RELIC, which is in fact the only English word that meets these conditions:

Done in three!

It is worth noting a few other rules and special cases. The hidden word and each of your
guesses must be a real English word that is five letters long. The file WordleDictionary.py
included with the starter package defines the constant FIVE_LETTER_WORDS as

FIVE_LETTER_WORDS = ["abaca", "abaci", . . . , "zoril", "zowie"]

where the three dots are placeholders for more than 5000 other five-letter words. If you
guess a word that it not in the word list, Wordle displays a message to that effect, at which
point you can delete the letters you’ve entered and try again. Another rule is that you only
get six guesses. If all the letters don’t match by then, Wordle gives up on you and tells you
what the hidden word was.

The most interesting special cases arise when the hidden word and the guesses contain
multiple copies of the same letter. Suppose, for example, that the hidden word is GLASS
and you for some reason guess SASSY. Wordle responds with the following colors:

 – 4 –

The green S shows that there is an S in the fourth position, and the yellow S shows that a
second S appears somewhere else in the hidden word. The S in the middle of SASSY,
however, remains gray because the hidden word does not contain three instances of the
letter S.

The WordleGraphics module
Even though you don’t have to make any changes to it or understand the details of its
operation, you need to know what capabilities the WordleGraphics module has on offer so
that you can use those facilities in your code. The most important thing to know is that this
library module exports a class called WordleGWindow, which implements all the graphical
capabilities. WordleGWindow is a subclass of GWindow and therefore inherits all the methods
that GWindow defines. Although you won’t need these features for the basic assignment,
the fact that the WordleGWindow is a GWindow means that you can add other objects to it if
you decide to implement your own creative extensions.

The methods exported by the WordleGWindow class (in addition to those it inherits from
GWindow) are outlined in Figure 3. The right column of the table gives only a brief
description of what these methods do. More complete descriptions appear later in this
handout in the description of the milestone that requires them.

Planning the implementation as a sequence of milestones
Whenever you are working on a programming project of any significant size, you should
never try to get the entire project running all at once. A much more effective strategy is to
define a series of milestones that allow you to complete the project in stages. Ideally, each
milestone you choose should be a program that you can test and debug independently, even
if the code you write to test a particular milestone doesn’t make its way into the finished
project. The advantage you get from making it possible to test each stage more than
compensates for having to write a little extra code along the way. Similarly, it often makes
sense to defer more the more complex aspects of a project until after you have gotten the
basic foundation working. The next few sections outline four milestones for the Wordle
project that walk you through different stages of the implementation. You should get each
one working before moving on to the next one.

Figure 3. Methods exported by WordleGWindow class

set_square_label(row, col, letter) Sets the letter in the specified row and column.
get_square_label(row, col) Returns the letter in the specified row and column.
add_enter_listener(fn) Specifies a callback function for the ENTER key.
show_message(msg) Shows a message below the squares.
set_square_state(row, col, state) Sets the state/color of the specified square.
get_square_state(row, col) Returns the state/color of the specified square.
set_current_row(row) Sets the row in which typed characters appear.
get_current_row() Gets the current row.
set_key_state(letter, state) Sets the state/color of the specified key letter.
get_key_state(letter) Returns the state/color of the specified key letter.

 – 5 –

Milestone #1: Pick a random word and display it in the first row of boxes
For your first milestone, all you have to do is choose a random word from the list provided
in the WordleDictionary.py module and then have that word appear in the five boxes
across the first row of the window. This milestone requires only a few lines of code, but
requires you to understand what tools you have and start putting them to use. For example,
the WordleGWindow class does not export any method for displaying an entire word. All
you have is a method set_square_letter that puts one letter in a box identified by its row
and column numbers.

As with everything in Python, rows and columns are numbered beginning with 0, so that
the top row of the window is row 0, and its column number range from 0 to 4. To avoid
cluttering up your code with numbers that don’t tell you much about what they mean
(where does 4 come from in the previous sentence, for example?), it is best to use the
constants N_ROWS and N_COLS whenever your code needs to know how many rows and
columns exist. Not only does N_COLS - 1 provide more insight than the number 4, but this
strategy also makes it easier to implement a SuperWordle program with longer words or a
different number of guesses.

Milestone #2: Check whether the letters entered by the user form a word
Although the starter program lets the user type letters into the Wordle game, nothing
happens when you hit the RETURN key or click the ENTER button. The WordleGWindow class
lets you respond to that event through the add_enter_listener method that works in much
the same way that add_event_listener does in the GWindow class. If you call

gw.add_enter_listener(enter_action)

typing RETURN or ENTER in the window will trigger a call to the function enter_action,
which you get to write.

For Milestone #2, your job is to write a version of enter_action that assembles a
five-letter string from the letters in the top row of boxes and checks to see whether it is a
legitimate English word. If it isn’t, your implementation of enter_action should call the
show_message method with the string "Not in word list", which is what the Times website
says. If it is a word, you should display some more positive message that shows that you
got this milestone running.

Milestone #3: Color the boxes
For this milestone, you need to add code to enter_action that, after checking to make sure
it is a legal word, goes through and colors the boxes to show the user which letters in the
guess match the word. The method you need to accomplish this task is

gw.set_square_state(row, col, state)

The row and column arguments are the same as the ones you used to set or get the letters
from the boxes, but the state argument requires a bit more explanation. You might prefer
to have a function called set_square_color to which you could pass a color name like
"Green". That model, however, is likely to cause confusion, because the actual colors used

 – 6 –

by the Times website are green, red, and yellow, but colors of a similar shade defined by
the following constants:

CORRECT_COLOR = "#66BB66" # A shade of green
PRESENT_COLOR = "#CCBB66" # A shade of brownish yellow
MISSING_COLOR = "#999999" # A shade of gray
UNKNOWN_COLOR = "#FFFFFF" # White

To minimize confusion, the state argument to set_square_state is one of the following
strings: "CORRECT", "PRESENT", "MISSING", or "UNKNOWN". The implementation of the
set_square_state method translates this name to the appropriate color constant.

The logic you need to use here is the same as it was for the Wordle problem in the section
on strings (Section 5). You need to keep track of which letters in the guess have been used
and cross them off as you assign colors. You also need to find the correct colors first so
that you don’t end up coloring a letter yellow that will later turn out to be in the correct
position.

Whenever the user enters a guess that appears in the word list, your program must do a
few things. First, it must check to see whether the user has correctly guessed all five letters,
in case you want to have your program display some properly congratulatory message. If
not, your program must move on to the next row. This information is maintained inside
the WordleGraphics.py module (which needs this information to know where typed letters
should appear) using the set_current_row and get_current_row methods.

Milestone #4: Color the keys
Your last milestone implements a very helpful feature from the New York Times website
in which it updates the colors of the keys on the virtual keyboard, making it easy to see
what letters you’ve already positioned, found, or determined not to be there. The
WordleGWindow class exports the methods set_key_state and get_key_state to
accomplish this task. These methods use the same string codes as the corresponding
methods for squares.

In solving this milestone, it is important to remember that once you have set the color
of a key, it won’t change back. If, for example, you’ve colored the S key green, it will
never get set to yellow or gray even though you may end up using those colors for squares
that contain an S.

Thoughts to keep in mind
• As with any large program, it is essential to get each milestone working before moving

on to the next. It almost never works to write a large program all at once without testing
the pieces as you go.

• You have to remember that uppercase and lowercase letters are different in Python. The
letters displayed in the window are all uppercase but the FIVE_LETTER_WORDS constant
is an array of lowercase words. At some point, your code will have to apply the
necessary case conversions.

Possible extensions (still to come)

