Project 3: Imageshop

Most of you have probably had the occasion to use some sort of image editing software
such as Adobe Photoshop™ or software from the open source and free GNU Image Manip-
ulation Program family, such as Glimpse. In this assignment, you will have the chance to
build a simple version of an image editor which we will call ImageShop, which implements
several simple operations on images along with a few more interesting ones.

Performing image manipulation in Python requires the use of the Pillow library, which
is not always fully included in the Anaconda distribution. This should have already been
resolved on everyone’s systems from using Karel, but if you are having issues, please contact
me and I can get you sorted out.

Contents

p—

Understanding the Initial Repository

Milestones
Milestone 1: Adding a Flip Horizontal button . . . . . ... ... ... ... ...
Milestone 2: Add the Rotate Left and Right buttons . . . . . ... ... ... ..
Milestone 3: Add a Grayscale button . . . . . . . ... ... .00
Milestone 4: Implement a Green Screen button . . . . . . . . ... ... ... ..
Milestone 5: Implement the Equalize button . . . . . . . .. ... ... ... ...

Tk W w NN

Potential Extensions 10

OOl

Understanding the Initial Repository

You can get the starting repository from Github here. This repository contains a skeleton
version of ImageShop.py, which is the only module that you will need to modify (although
you will have to create two others). There are a few other useful library files you will need for
this project as well included, so take the time to browse over what resources are available to
you. Running the ImageShop.py code in the repository will initially create the screen image
shown in Figure la, which includes a button area to the left of the screen with Load and
Flip Vertical buttons and then a blank area to the right where the image will be displayed.
Clicking Load brings up a file chooser that lets you select an image. A directory of sample
images has been included in the repository, so if you navigate to the images folder you will
see a list of the image files included in this project. If you select VanGogh-StarryNight .png,
ImageShop will load that file and center it in the image area, as shown in Figure 1b. If you
then click the Flip Vertical button, you will get the picture shown in Figure 1lc, with the
inverted image. Clicking the Flip Vertical button again restores the original image.

The code for ImageShop.py in the repository uses a new class called GButton, defined
in the button.py library, which is responsible for displaying the buttons on the screen. The

Due 1


https://glimpse-editor.org/
https://classroom.github.com/a/Q8-ru1k8

Imageshop

(a) Initial screen upon running (b) Initially loading the Van- (c) The VanGogh image after
ImageShop.py. An area to the Gogh image and having it ap- pressing the Flip Vertically
left will hold all the buttons and pear centered on the screen button.

the images will appear to the

right.

Figure 1: Running the program and then loading and manipulating the
VanGogh-StarryNight.png image in the supplied images folder in the reposi-
tory.

function call for GButton takes the text to display in the button, along with a function to call
when the user clicks the button. In the ImageShop code, the call to create a new GButton
object appears within the function add_button, which also takes care of placing each new
button just underneath the previous one in the button area.

Milestones

As per usual, this project has been divided up into a series of smaller tasks to help you
approach the project in a controlled fashion. For this project, each of the following milestones
will focus on adding new buttons to the left of the screen and then implementing the desired
image manipulation in a new function.

Milestone 1: Adding a Flip Horizontal button

To start you off with a relatively straightforward task, add a new Flip Horizontal but-
ton that flips the image from left to right. To display the button on the screen, you
simple need to copy the code that displays the Flip Vertical button, adding new func-
tions f1ip_horizontal action, which will be your button callback, and f1ip_horizontal,
which actually implements the image transformation. The only function that requires any
real change from the flip_vertical model is flip_horizontal, where you have to reverse
each individual row in the pixel array instead of reversing the array as a whole. I suggest first
adding the button (and making sure it appears on the screen), then the callback function
and finally the transformation function itself to make sure you are understanding what each
is doing along the way.

CS 151 2



Imageshop

Milestone 2: Add the Rotate Left and Right buttons

Your next step is to add two buttons that rotate the image on the screen by 90°. Once again,
the most challenging part of this milestone is adding the functions that actually transform
the GImage. Implementing these rotations is a bit tricky, since you have to figure out where
each of the old pixels ends up in the new image array. Since the dimensions of the new image
are inverted from the original (the new width is the old height and vice versa), you need to
create a new array with the correct number of elements in each dimension. Once you have
done so, you need to copy each old pixel into the correct position in the new array. This
process is illustrated in Figure 2, which shows where each pixel in the first row of the old array
(before) moves to the new array (after) during a 90° rotation left (or counter-clockwise).

[o1[2] 0131 [0][4] [01[5] [o1[0] fo1r11 [0][2]

\~ \.
[11(5] \ (11001 || [11[1] || [11[2]
h\
™~

.
\~ \~
A
™~

‘fsq{ 2100 || 21011 || r21c21

[3100] || (31011 || [31(2

Figure 2: Graphical depiction of rotating an image array 90° counter-clockwise
(left). Note that what was previously the last column is now the first row, and
what was the first row is now the first column.

/1)

Milestone 3: Add a Grayscale button

In this simplest of all the milestones, your job is to add a Grayscale button that replaces the
image with a new one in which the image has been converted to grayscale. The code necessary
for this transformation appears not only in the book but also in the file GrayscaleImage.py
in the repository. To implement this milestone, you should not copy and paste the code from
GrayscalelImage.py, but instead import the function or functions you need. The advantage
of doing so is that there is then only one copy of the code, which is shared between the
two applications. Copying code inevitably creates problems for software maintenance, since
changes made to one copy may not be incorporated into the other, leading to incompatible
versions.

CS 151 3



Imageshop

Milestone 4: Implement a Green Screen button

The Green Screen button implements an operation that is used all the time in movies
to merge actors into a background scene. The basic technique is called chroma keying, in
which a particular range of colors is used to represent a background that can later be made
transparent using a computational process. The most common colors used in chroma keying
are green and blue (which give rise to the more specific names green screen and blue screen)
because those colors are most easily differentiated from flesh tones.

When the studios use the green screen technique, for example, the actors are filmed in
front of a green background. The digital images are then processed so that green pixels are
made transparent, so that the background shows through when the partially transparent
image is overlaid on top of the background image.

To illustrate this process, suppose that you are making Star Wars: The Force Awakens
and that you want to superimpose an image of Daisy Ridley’s character Rey on top of a shot
of the interior of the Millennium Falcon shown in Figure 3a. You then shoot an image of
Rey in front of a green screen like that shown in Figure 3b. If you skip the green pixels in

(a) Background shot of the interior of the Mil-  (b) Shot of Rey in front of a green screen.
lennium Falcon.

Figure 3

Figure 3b and copy all the others on top of Figure 3a, you get the composite image shown
in Figure 4.

The user should always first load the desired background image as per usual using Load.
Then, when the user clicks the Green Screen button, the first thing your program has to do
is read in a new image using the choose_input_file function in the filechooser module
in much the same way as the load_action function does in the supplied starter code. Once
you have the new GImage, you need to go through each pixel in both the old image and the
new image and replace the old pixel value with the new one, unless the new pixel is green (at
least by some definition). It is unlikely though that the pixels that appear in the portion of
the green screen image will have a color value exactly equal to the color "Green". Instead,
they will have pixel values that lie in a range of colors that appear to be “mostly green”. For
this part of the assignment, you should treat a pixel as green if its green component is at

CS 151 4



Imageshop

Figure 4: Composite image of Rey inside the Millennium Falcon.

least twice as large as the largest of its red and blue components.

It is not necessary for the old image and the new image to have the same size. Your
program should assume that the upper left corners of the two images are at the same place,
and update only those pixels whose coordinates exist in both images. The final image,
however, should be the same size as the original, and not the overlay. If the images are
the same size, as they are for the Millenniumfalcon.png and ReyGreenScreen.png in the
images folder, then the overlay operation will include every pixel in the image. Make sure
you test overlaying Rey atop other images to ensure that your function behaves properly for
differently sized images!

Milestone 5: Implement the Equalize button

Digital processing can do an amazing job of enhancing a photograph. Consider, for example,
the countryside image on the left in Figure 5. Particularly when you compare it to the
enhanced version on the right, the picture on the left seems hazy. The enhanced version
is the result of applying an algorithm called histogram equalization, which spreads out the
intensities shown in the picture to increase its effective contrast and make it easier to identify
individual features.

As described in Section 7.7 of the book, the individual pixels in an image are represented
using four single-byte values, one for the transparency of the image and three representing
the intensity of the red, green, and blue components of the color. The human eye perceives
some colors as brighter than others, much in the same way that it perceives audible tones
of certain frequencies as louder than others. The color green, for example, appears brighter
than either red or blue, and if our eyes were more sensitive to violet hues, the sky would

CS 151 5



Imageshop

Figure 5: Before and after images illustrating the histogram equalization algo-
rithm results. Left image from Wikipedia.

appear more purple instead of the blue we currently see.

Luminance

This concept of brightness can be quantified using the idea of luminance, as described on
page 256 in the book. That idea is implemented as a luminance function, which is defined
in the GrayscaleImage module in the repository. The value returned by luminance is an
integer between 0 and 255, just like the intensity values for red, green, and blue. A luminance
of 0 indicates black, a luminance of 255 indicates white, and any other color falls somewhere
in between.

The histogram-equalization algorithm you need to write for this assignment uses lumi-
nosities rather than colors and therefore produces a grayscale image, much as you did when
you implemented the Grayscale button. The process requires several steps, each of which
is best coded as a helper function, which are described in the following sections.

Calculating the image histogram

Given an image, there may be multiple different pixels that all have the same luminance. In
fact, there almost certainly are! After all, there are only 256 possible luminance values, and
most images will have thousands of individual pixels. An image histogram is a representation
of the distribution of the luminance throughout the image. Specifically, the histogram is an
array of 256 integers—one for each possible luminance-where each entry in the array represents
the number of pixels in the image with that luminance. For example, the entry at index 0
of the array represents the number of pixels in the image with a luminance of 0. The entry
an index 1 represents the number of pixels in the image with luminance of 1, and so on and
so forth.

Looking at an image‘s histogram tells you a lot about the distribution of brightness
throughout the image. The images at the top of Figure 6, for example, shows the original
low-contrast picture of the countryside, along with its image histogram. The bottom row

CS 151 6


http://en.wikipedia.org/wiki/File:Unequalized_Hawkes_Bay_NZ.jpg

Imageshop

shows an image and histogram for a high-contrast image. Images with low contrast tend
to have histograms more tightly clustered around a small number of values, while images
with higher contrasts tend to have histograms that are more spread out over the full possible
range of values.

Figure 6: Comparison of histograms for a low contrast image (top) and a high
contrast image (bottom). Higher contrast images result in a much broader spread

of the image luminosities in the histogram. Bottom left image from Ansel Adams
Gallery.

Related to the image histogram is the cumulative histogram, which shows not simply
how many pixels have a particular luminance, but rather how many pixels have a particular
luminance or lower. Like the image histogram, the cumulative histogram is an array of
256 values: one for each possible value of the luminance. You can compute the cumulative
histogram purely from the image histogram. Each entry in the cumulative histogram is the
sum of all the entries in the image histogram up to and including that index position. As
an example, if the first six entries in the image histogram are:

1,3,5,7,9,11

CS 151 7


https://www.sfmoma.org/artwork/57.941/
https://www.sfmoma.org/artwork/57.941/

Imageshop

then the corresponding entries in the cumulative histogram would be:
1,1+3,14+3+51+3+5+7,1+3+5+7+9,1+3+5+7+9+11

or, in other words:
1,4,9,16, 25,36
In Figure 7 we can see the cumulative histograms for the two images from Figure 6. Notice

how the low-contrast image has a sharp transition in its cumulative histogram, while the
higher-contrast image tends to have a smoother increase over time.

Figure 7: Comparison of cumulative histograms for a low contrast image (top)
and a high contrast image (bottom). Lower contrast image tend to create a much
sharper “wall” in the cumulative histogram, versus the more gradual increase in
higher contrast images.

The histogram-equalization algorithm

The cumulative histogram provides just what you need for the histogram-equalization al-
gorithm. To get a sense to how it works, it helps to start with an example. Suppose that

CS 151 8



Imageshop

you have a pixel in the original image whose luminance is 106. Since the maximum pos-
sible luminance for a pixel is 255, this means that the “relative” luminance of this pixel is
106/255 & 41.5 percent, which means that the pixel’s luminance is roughly 41.5 percent of
the maximum possible. If you were to assume that all the intensities were distributed evenly
across the image, you would expect this particular pixel to have a brightness greater than
41.5 percent of the other pixels in the image.

Similarly, suppose you have another pixel in the original image whose luminance is 222.
The relative luminance of this pixel is 222/255 ~ 87.1 percent, so we would expect that,
should the intensities be evenly distributed, this pixel would be brighter than 87.1 percent
of the pixels in the image.

The histogram equalization algorithm works by trying to change the intensities of the
pixels in the original image as follows: if a pixel is supposed to be brighter than X percent
of the pixels in the image, then the algorithm attempts to map it to a luminance that will
make it brighter than as close to X percent of the total pixels as possible. In doing so,
the algorithm attempts to more evenly distribute the luminosities across the total available
options. Implementing this process turns out to be much easier than it might seem, especially
if you have the cumulative histogram for an image.

The key idea is this. Suppose that an original pixel in the image has luminance L. If
you look up the L entry in the cumulative histogram for the image, you will get back the
total number of pixels in the image that have luminance of L or less (that is literally what
the cumulative histogram tells you). You could then convert this value into the fraction of
pixels in the image with luminance L or less by dividing by the total number of pixels in the
image. Once you have the fraction of pixels with intensities less than or equal to the current
luminance L, you can scale this number (which is currently between 0 and 1) so that it is
between 0 and 255, which produces a valid luminance. The histogram equalization therefore
consists of the following steps:

1. Compute the image histogram from the original image
2. Compute the cumulative histogram from the image histogram
3. Replace each luminance value (L) in the original image using the formula:

255 x cumulative histogram[L]

new luminance = -
total number of pixels

Your task in this part of the assignment will be considerably easier if you decompose
the problem into several helper functions and test each function independently as you go.
The algorithm for performing histogram equalization is sufficiently complex that it would
make sense to code it as a separate module by itself and import the necessary functions into
ImageShop.py.

CS 151 9



Imageshop

Potential Extensions

This project offers essentially unlimited possibilities for extensions. All you need to do is
implement features from your favorite image editor! Here are a few ideas though:

o Implement a “posterize” button. Shepard Fairey’s iconic design of the campaign poster
for President Obama’s 2008 campaign was widely adapted for other drawings. In this
image, all pixels are converted to the closest equivalent color chosen from a restricted
list of colors. The image below, for example, contains only red, an off-white ivory tone,
and three shades of blue. Your extension could, for example, replace all intermediate
colors with the closest match in Java’s predefined color palette or use some other
strategy you find by searching around the web or thinking up on your own!

o Implement an averaging filter. When using low-resolution cameras, images can look
rather blotchy. The rightmost image below, for example, shows an image of Saturn
taken by the Cassini probe. You can create an image like the one on the right, which
looks much smoother, by replacing each pixel with a weighted average of its own
luminance and that of its nearest neighbors. You could add a button to your ImageShop
program that performs this sort of average.

CS 151 10



Imageshop

o Add a touch-up tool. If you need to edit an image, it is particularly useful to have a
pencil-like tool that allows you to drop a new color on any pixel in the image. The
usual strategy is to allow the user to pick a color first and then change individual pixels
to that color by clicking on them with the mouse.

o Implement a crop box. In the basic assignment, the mouse is used only for buttons,
but you could also use it to draw a rectangle on the screen and then limit the functions
of the other operators to the region inside the rectangle. It could also make sense to
add a Crop button that eliminates all pixels outside the crop box.

o Whatever else you want! Go wild! Lots of room for some potential ++ scores on this
assignment.

CS 151 11



	Understanding the Initial Repository
	Milestones
	Milestone 1: Adding a Flip Horizontal button
	Milestone 2: Add the Rotate Left and Right buttons
	Milestone 3: Add a Grayscale button
	Milestone 4: Implement a Green Screen button
	Milestone 5: Implement the Equalize button

	Potential Extensions

