
 We discussed several ways 
of storing information in an 
array, and later searching 
for the information. 

 Hash tables are a common 
approach to the 
storing/searching problem. 

 This presentation introduces 
hash tables.

Hash Tables

Data Structures
and Other Objects



What is a Hash Table ?

 The simplest kind of hash 
table is an array of records.

 This example has 701 
records.

[ 0 ] [ 1 ] [ 2 ] [ 3 ] [ 4 ] [ 5 ]

An array of records

. . .

[ 700]



What is a Hash Table ?

 Each record has a special 
field, called its key.

 In this example, the key is 
an integer.

[ 0 ] [ 1 ] [ 2 ] [ 3 ] [ 4 ] [ 5 ]

. . .

[ 700]

[ 4 ]

5033755339



What is a Hash Table ?

 The number might be a 
person's campus phone 
number, and the rest of the 
record has information 
about the person.

[ 0 ] [ 1 ] [ 2 ] [ 3 ] [ 4 ] [ 5 ]

. . .

[ 700]

[ 4 ]

5033755339



What is a Hash Table ?

 When a hash table is in use, 
some spots contain valid 
records, and other spots are 
"empty".

[ 0 ] [ 1 ] [ 2 ] [ 3 ] [ 4 ] [ 5 ] [ 700]
5033706862 5033706165

. . .
50337553145033755314 5033755339



Inserting a New Record

 In order to insert a new 
record, the key must 
somehow be converted to an 
array index.

 The index is called the hash 
value of the key.

 5033706456

[ 0 ] [ 1 ] [ 2 ] [ 3 ] [ 4 ] [ 5 ] [ 700]
5033706862 5033706165

. . .
5033755314 5033755339



Inserting a New Record

 Typical way create a hash 
value:

(Number mod 701) 

What is (580625685 mod 701)  ?

 5033706456

[ 0 ] [ 1 ] [ 2 ] [ 3 ] [ 4 ] [ 5 ] [ 700]
5033706862 5033706165

. . .
5033755314 5033755339



Inserting a New Record

 Hash with modular 
arithmetic:

(Phone# mod 701) 

What is (5033706454 mod 701) ?
3

 5033706454

[ 0 ] [ 1 ] [ 2 ] [ 3 ] [ 4 ] [ 5 ] [ 700]
5033706862 5033706165

. . .
5033755314 5033755339



Inserting a New Record

 The hash value is used for 
the location of the new 
record.

[ 0 ] [ 1 ] [ 2 ] [ 3 ] [ 4 ] [ 5 ] [ 700]

. . .

[ 0 ] [ 1 ] [ 2 ] [ 3 ] [ 4 ] [ 5 ] [ 700]
5033706862 5033706165

. . .
50337553145033755314 5033755339

[3]

 5033706454



Inserting a New Record

 The hash value is used for 
the location of the new 
record.

[ 0 ] [ 1 ] [ 2 ] [ 3 ] [ 4 ] [ 5 ] [ 700]
5033706862 5033706454 5033706165

. . .
5033755314 5033755339



Collisions

 Here is another new record 
to insert, with a hash value 
of 2.

My hash
value is [2].

 5033706453

[ 0 ] [ 1 ] [ 2 ] [ 3 ] [ 4 ] [ 5 ] [ 700]
5033706862 5033706454 5033706165

. . .
5033755314 5033755339



Collisions

 This is called a collision, 
because there is already 
another valid record at [2].

When a collision 
occurs,

move forward until you
find an empty spot.

 5033706453

[ 0 ] [ 1 ] [ 2 ] [ 3 ] [ 4 ] [ 5 ] [ 700]
5033706862 5033706454 5033706165

. . .
5033755314 5033755339



Collisions

 This is called a collision, 
because there is already 
another valid record at [2].

When a collision 
occurs,

move forward until you
find an empty spot.

 5033706453

[ 0 ] [ 1 ] [ 2 ] [ 3 ] [ 4 ] [ 5 ] [ 700]
5033706862 5033706454 5033706165

. . .
5033755314 5033755339



Collisions

 This is called a collision, 
because there is already 
another valid record at [2].

When a collision 
occurs,

move forward until you
find an empty spot.

 5033706453

[ 0 ] [ 1 ] [ 2 ] [ 3 ] [ 4 ] [ 5 ] [ 700]
5033706862 5033706454 5033706165

. . .
5033755314 5033755339

👍



Collisions

 This is called a collision, 
because there is already 
another valid record at [2].

The new record goes
in the empty spot.

[ 0 ] [ 1 ] [ 2 ] [ 3 ] [ 4 ] [ 5 ] [ 700]
5033706862 5033706454 5033706165

. . .
5033755314 5033755339  5033706453



Searching for a Key

 The data that's attached to a 
key can be found fairly 
quickly.

[ 0 ] [ 1 ] [ 2 ] [ 3 ] [ 4 ] [ 5 ] [ 700]
5033706862 5033706454 5033706165

. . .
5033755314 5033755339  5033706453

5033755339

 5033706453



Searching for a Key

 Calculate the hash value.
 Check that location of the array 

for the key.

My hash
value is [2].

Not me.

 5033706453

[ 0 ] [ 1 ] [ 2 ] [ 3 ] [ 4 ] [ 5 ] [ 700]
5033706862 5033706454 5033706165

. . .
5033755314 5033755339  5033706453

5033755339



Searching for a Key

 Keep moving forward until you 
find the key, or you reach an 
empty spot.

My hash
value is [2].

Not me.

[ 0 ] [ 1 ] [ 2 ] [ 3 ] [ 4 ] [ 5 ] [ 700]
5033706862 5033706454 5033706165

. . .
5033755314 5033755339  5033706453

5033755339

 5033706453



Searching for a Key

 Keep moving forward until you 
find the key, or you reach an 
empty spot.

My hash
value is [2].

Not me.

[ 0 ] [ 1 ] [ 2 ] [ 3 ] [ 4 ] [ 5 ] [ 700]
5033706862 5033706454 5033706165

. . .
5033755314 5033755339  5033706453

5033755339

 5033706453



Searching for a Key

 Keep moving forward until you 
find the key, or you reach an 
empty spot.

My hash
value is [2].

Yes!

 5033706453

[ 0 ] [ 1 ] [ 2 ] [ 3 ] [ 4 ] [ 5 ] [ 700]
5033706862 5033706454 5033706165

. . .
5033755314 5033755339  5033706453

5033755339



Searching for a Key

 When the item is found, the 
information can be copied to the 
necessary location.

My hash
value is [2].

Yes!

 5033706453

[ 0 ] [ 1 ] [ 2 ] [ 3 ] [ 4 ] [ 5 ] [ 700]
5033706862 5033706454 5033706165

. . .
5033755314 5033755339  5033706453

5033755339



Deleting a Record

 Records may also be deleted from a hash table.

Please
delete me.

[ 0 ] [ 1 ] [ 2 ] [ 3 ] [ 4 ] [ 5 ] [ 700]
5033706862 5033706454 5033706165

. . .
5033755314 5033755339  5033706453

5033755339



Deleting a Record

 Records may also be deleted from a hash table.
 But the location must not be left as an ordinary "empty 

spot" since that could interfere with searches.

[ 0 ] [ 1 ] [ 2 ] [ 3 ] [ 4 ] [ 5 ] [ 700]
5033706862 5033706454 5033706165

. . .
5033755314 5033755339  5033706453

5033755339



Deleting a Record

 Records may also be deleted from a hash table.
 But the location must not be left as an ordinary "empty 

spot" since that could interfere with searches.
 The location must be marked in some special way so 

that a search can tell that the spot used to have 
something in it.

[ 0 ] [ 1 ] [ 2 ] [ 3 ] [ 4 ] [ 5 ] [ 700]
5033706862 5033706454 5033706165

. . .
5033755314 5033755339  5033706453

5033755339



 Hash tables store a collection of records with keys.
 The location of a record depends on the hash value 

of the record's key.
 When a collision occurs, the next available location 

is used.
 Searching for a particular key is generally quick.
 When an item is deleted, the location must be 

marked in a special way, so that the searches know 
that the spot used to be used.

   Summary



THE  END
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