
 We discussed several ways
of storing information in an
array, and later searching
for the information.

 Hash tables are a common
approach to the
storing/searching problem.

 This presentation introduces
hash tables.

Hash Tables

Data Structures
and Other Objects

What is a Hash Table ?

 The simplest kind of hash
table is an array of records.

 This example has 701
records.

[0] [1] [2] [3] [4] [5]

An array of records

. . .

[700]

What is a Hash Table ?

 Each record has a special
field, called its key.

 In this example, the key is
an integer.

[0] [1] [2] [3] [4] [5]

. . .

[700]

[4]

5033755339

What is a Hash Table ?

 The number might be a
person's campus phone
number, and the rest of the
record has information
about the person.

[0] [1] [2] [3] [4] [5]

. . .

[700]

[4]

5033755339

What is a Hash Table ?

 When a hash table is in use,
some spots contain valid
records, and other spots are
"empty".

[0] [1] [2] [3] [4] [5] [700]
5033706862 5033706165

. . .
50337553145033755314 5033755339

Inserting a New Record

 In order to insert a new
record, the key must
somehow be converted to an
array index.

 The index is called the hash
value of the key.

 5033706456

[0] [1] [2] [3] [4] [5] [700]
5033706862 5033706165

. . .
5033755314 5033755339

Inserting a New Record

 Typical way create a hash
value:

(Number mod 701)

What is (580625685 mod 701) ?

 5033706456

[0] [1] [2] [3] [4] [5] [700]
5033706862 5033706165

. . .
5033755314 5033755339

Inserting a New Record

 Hash with modular
arithmetic:

(Phone# mod 701)

What is (5033706454 mod 701) ?
3

 5033706454

[0] [1] [2] [3] [4] [5] [700]
5033706862 5033706165

. . .
5033755314 5033755339

Inserting a New Record

 The hash value is used for
the location of the new
record.

[0] [1] [2] [3] [4] [5] [700]

. . .

[0] [1] [2] [3] [4] [5] [700]
5033706862 5033706165

. . .
50337553145033755314 5033755339

[3]

 5033706454

Inserting a New Record

 The hash value is used for
the location of the new
record.

[0] [1] [2] [3] [4] [5] [700]
5033706862 5033706454 5033706165

. . .
5033755314 5033755339

Collisions

 Here is another new record
to insert, with a hash value
of 2.

My hash
value is [2].

 5033706453

[0] [1] [2] [3] [4] [5] [700]
5033706862 5033706454 5033706165

. . .
5033755314 5033755339

Collisions

 This is called a collision,
because there is already
another valid record at [2].

When a collision
occurs,

move forward until you
find an empty spot.

 5033706453

[0] [1] [2] [3] [4] [5] [700]
5033706862 5033706454 5033706165

. . .
5033755314 5033755339

Collisions

 This is called a collision,
because there is already
another valid record at [2].

When a collision
occurs,

move forward until you
find an empty spot.

 5033706453

[0] [1] [2] [3] [4] [5] [700]
5033706862 5033706454 5033706165

. . .
5033755314 5033755339

Collisions

 This is called a collision,
because there is already
another valid record at [2].

When a collision
occurs,

move forward until you
find an empty spot.

 5033706453

[0] [1] [2] [3] [4] [5] [700]
5033706862 5033706454 5033706165

. . .
5033755314 5033755339

👍

Collisions

 This is called a collision,
because there is already
another valid record at [2].

The new record goes
in the empty spot.

[0] [1] [2] [3] [4] [5] [700]
5033706862 5033706454 5033706165

. . .
5033755314 5033755339 5033706453

Searching for a Key

 The data that's attached to a
key can be found fairly
quickly.

[0] [1] [2] [3] [4] [5] [700]
5033706862 5033706454 5033706165

. . .
5033755314 5033755339 5033706453

5033755339

 5033706453

Searching for a Key

 Calculate the hash value.
 Check that location of the array

for the key.

My hash
value is [2].

Not me.

 5033706453

[0] [1] [2] [3] [4] [5] [700]
5033706862 5033706454 5033706165

. . .
5033755314 5033755339 5033706453

5033755339

Searching for a Key

 Keep moving forward until you
find the key, or you reach an
empty spot.

My hash
value is [2].

Not me.

[0] [1] [2] [3] [4] [5] [700]
5033706862 5033706454 5033706165

. . .
5033755314 5033755339 5033706453

5033755339

 5033706453

Searching for a Key

 Keep moving forward until you
find the key, or you reach an
empty spot.

My hash
value is [2].

Not me.

[0] [1] [2] [3] [4] [5] [700]
5033706862 5033706454 5033706165

. . .
5033755314 5033755339 5033706453

5033755339

 5033706453

Searching for a Key

 Keep moving forward until you
find the key, or you reach an
empty spot.

My hash
value is [2].

Yes!

 5033706453

[0] [1] [2] [3] [4] [5] [700]
5033706862 5033706454 5033706165

. . .
5033755314 5033755339 5033706453

5033755339

Searching for a Key

 When the item is found, the
information can be copied to the
necessary location.

My hash
value is [2].

Yes!

 5033706453

[0] [1] [2] [3] [4] [5] [700]
5033706862 5033706454 5033706165

. . .
5033755314 5033755339 5033706453

5033755339

Deleting a Record

 Records may also be deleted from a hash table.

Please
delete me.

[0] [1] [2] [3] [4] [5] [700]
5033706862 5033706454 5033706165

. . .
5033755314 5033755339 5033706453

5033755339

Deleting a Record

 Records may also be deleted from a hash table.
 But the location must not be left as an ordinary "empty

spot" since that could interfere with searches.

[0] [1] [2] [3] [4] [5] [700]
5033706862 5033706454 5033706165

. . .
5033755314 5033755339 5033706453

5033755339

Deleting a Record

 Records may also be deleted from a hash table.
 But the location must not be left as an ordinary "empty

spot" since that could interfere with searches.
 The location must be marked in some special way so

that a search can tell that the spot used to have
something in it.

[0] [1] [2] [3] [4] [5] [700]
5033706862 5033706454 5033706165

. . .
5033755314 5033755339 5033706453

5033755339

 Hash tables store a collection of records with keys.
 The location of a record depends on the hash value

of the record's key.
 When a collision occurs, the next available location

is used.
 Searching for a particular key is generally quick.
 When an item is deleted, the location must be

marked in a special way, so that the searches know
that the spot used to be used.

 Summary

THE END

Presentation copyright 2010 Addison Wesley Longman,
For use with Data Structures and Other Objects Using C++
by Michael Main and Walter Savitch.

Some artwork in the presentation is used with permission from Presentation Task Force
(copyright New Vision Technologies Inc) and Corel Gallery Clipart Catalog (copyright
Corel Corporation, 3G Graphics Inc, Archive Arts, Cartesia Software, Image Club
Graphics Inc, One Mile Up Inc, TechPool Studios, Totem Graphics Inc).

Students and instructors who use Data Structures and Other Objects Using C++ are welcome
to use this presentation however they see fit, so long as this copyright notice remains
intact.

	Hash Tables
	What is a Hash Table ?
	Slide 3
	Slide 4
	Slide 5
	Inserting a New Record
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Collisions
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Searching for a Key
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Deleting a Record
	Slide 23
	Slide 24
	Summary
	THE END

