0x2.0-1
Crypto
I am a weapons-grade finitist. I don’t believe in numbers larger than two.
stdintitertoolsfields.py
uintcount()-c-c flag to Python to run a script directly at command line.;
podman start -l ; podman exec -it -ltime to… time things./bin/bash$ /bin/bash
user@DESKTOP-THMS2PJ:~/tmp$ time python3 -c "from itertools import count; print(0 in count())"
True
real 0m0.013s
user 0m0.014s
sys 0m0.000s$ /bin/bash
user@DESKTOP-THMS2PJ:~/tmp$ time python3 -c "from itertools import count; print(1000 in count())"
True
real 0m0.012s
user 0m0.012s
sys 0m0.000s| 10^\(n\) | real |
|---|---|
| 1 | 00.012 |
| 2 | 00.012 |
| 3 | 00.012 |
| 4 | 00.013 |
| 5 | 00.013 |
| 6 | 00.027 |
| 7 | 00.164 |
| 8 | 01.498 |
| 9 | 16.810 |
uint32_t
uint64_t?
<limits.h>uints and ints in C are rings
uint\(n\)_t \(\nRightarrow a + b > a\)num.c
atoi - alphabetical to int<stdlib.h> per man atoi, but might work without that.uint8_t values are equivalent to operations on the natural numbers modulo \(2^8\) \[
\mathbb{N}/(2^8)
\]INT_MAX, UINT_MAX, CHAR_MAX, etc.
stdint namesuint\(n\)_t \(: a + b \equiv a + b \pmod {2^n}\)stdintuint64_t models infinite \(\mathbb{N}\)| ft | in. | .in | |
|---|---|---|---|
| A’ja | 6 | 4 | 0 |
| Mean | 5 | 9 | 3 |
| ft | in. | .in | |
|---|---|---|---|
| A’ja | 6 | 4 | 0 |
| Mean | 5 | 9 | 3 |
| Diff | 7 |
3 is more than 0| ft | in. | .in | |
|---|---|---|---|
| A’ja | 6 | 4 | 0 |
| Mean | 5 | 9 | 3 |
| Carry | 0 | 1 | 0 |
| Diff | 7 |
| ft | in. | .in | |
|---|---|---|---|
| A’ja | 6 | 4 | 0 |
| Mean | 5 | 9 | 3 |
| Carry | 0 | 1 | 0 |
| Diff | 6 | 7 |
| ft | in. | .in | |
|---|---|---|---|
| A’ja | 6 | 4 | 0 |
| Mean | 5 | 9 | 3 |
| Carry | 1 | 0 | 0 |
| Diff | 6 | 7 |
| ft | in. | .in | |
|---|---|---|---|
| A’ja | 6 | 4 | 0 |
| Mean | 5 | 9 | 3 |
| Carry | 1 | 0 | 0 |
| Diff | 0 | 6 | 7 |
UINT_MAX or ULONG_MAX by:
man scanfhadder.c
#include <stdlib.h>
#include <stdint.h>
#include <stdio.h>
int main() {
int buf[6];
printf("Insert 2 heights as XftY.Zin, each on their own line\n");
scanf("%dft%d.%din", &buf[0], &buf[1], &buf[2]);
scanf("%dft%d.%din", &buf[3], &buf[4], &buf[5]);
printf("%dft%d.%din\n", buf[0], buf[1], buf[2]);
return 0;
}stdintuint8_ts as digits in base 256 arithmeticdivmod)| 1 | 3 | 9 | 5 | |
|---|---|---|---|---|
| 3 | - | - | - | - |
| 4 | - | - | - | - |
| 1 | 3 | 9 | 5 | |
|---|---|---|---|---|
| 3 | 3 | 9 | 27 | 15 |
| 4 | 4 | 12 | 36 | 20 |
| 100 | 30 | 9 | .5 | |
|---|---|---|---|---|
| 30 | 3000 | 900 | 270 | 15 |
| 4 | 400 | 120 | 36 | 2 |
| 100 | 30 | 9 | .5 | |
|---|---|---|---|---|
| 30 | 3000 | 900 | 270 | 15 |
| 4 | 400 | 120 | 36 | 2 |
\[ \begin{align*} 5& \times 4 \times 10^{-1} &= 2&\\ +5& \times 3 \times 10^{0} &= 15&\\ +9& \times 4 \times 10^{0} &= 36&\\ +9& \times 3 \times 10^{1} &= 270&\\ +3& \times 4 \times 10^{1} &= 120&\\ +3& \times 3 \times 10^{2} &= 900&\\ +1& \times 4 \times 10^{2} &= 400&\\ +1& \times 3 \times 10^{3} &= 3000&\\ \end{align*} \]
\[ \begin{align*} 139.5& = &1 * 10^2 + &3 * 10^1 + &9 * 10^0& + 5 * 10^{-1}\\ 34& = &&3 * 10^1 + &4 * 10^0&\\ \end{align*} \]
Take \(x = 10\) \[ \begin{align*} 139.5& = &1 * x^2 + &3 * x + &9& + 5 * x^{-1}\\ 34& = &&3 * x + &4&\\ \end{align*} \]
That is polynomial; can work with those.
\[ (x^2 + 3x + 9 + 5x^{-1})(3x + 4) \]
\[ (x^2 + 3x + 9 + 5x^{-1})(3x) + (x^2 + 3x + 9 + 5x^{-1})(4) \]
\[ (3x^3 + 9x^2 + 27x + 15) + (4x^2 + 12x + 36 + 20x^{-1}) \]
\[ 3x^3 + 13x^2 + 39x + 51 + 20x^{-1} \]
\[ 3x^3 + 13x^2 + 39x + 51 + 20x^{-1} \]
uint32_t
uint32_t *alias;;uint64_t
uint32_t *alias = &array;uint64_t tmp = alias[5];stdintuint64_ts or 128 uint32_tsuint64_t value returned the carry value (it was nice to keep track of)stdint