
Preemptive Uniprocessor EDF Schedulability Analysis with Preemption
Costs Considered

Calvin Deutschbein, Sanjoy Baruah
University of North Carolina
{cd, baruah}@cs.unc.edu

Summary: We report here on our ongoing explorations
of schedulability and sustainability analysis that is cognizant
of preemption costs, in the uniprocessor EDF scheduling of
sporadic task systems.

I. INTRODUCTION

In real-time computing, time bounding processor usage of
tasks is critical to ensure that in a running system the deadlines
of all tasks are always met. Preemption delays complicate
predictability as they are highly sensitive to a variety of
system parameters and must be taken into consideration to
ensure schedulability of a system, but many existing mod-
els do not account for these delays. Several such periodic
scheduling problems were studied in [6], and many interesting
and important complications and considerations identified and
studied; this paper explores some of these complications and
considerations as they apply to sporadic (see, e.g., [8], [5])
rather than periodic task models. Each task τi is characterized
by a worst case execution time (WCET) Ci, a relative deadline
Di, and a minimum inter-arrival separation Ti. A task is
assumed to generate an unbounded sequence of jobs, with
each job arriving at least Ti apart from any other arrival,
with a WCET Ci, and needing to complete execution by a
deadline that occurs Di time-units after arrival. A sporadic task
system τ comprises a collection of several such independent
tasks executing upon a shared platform: τ = {τ1, τ2, . . . , τn}.
A sporadic task system τ in which each task satisfies the
additional property that its relative deadline parameter is equal
to its period (Di = Ti for all τi ∈ τ ) is said to be an implicit-
deadline sporadic task system.

A. Schedulability analysis

Let A denote a scheduling algorithm. A sporadic task
system τ is said to be A-schedulable on platform P if A
schedules all possible release patterns of jobs of τ without
missing a deadline on P . An A-schedulability test accepts
as input the specifications of a sporadic task system and
a platform, and determines whether the task system is A-
schedulable. An A-schedulability test is said to be exact if
it identifies all A-schedulable systems, and sufficient if it
identifies only some A-schedulable systems.

Prior work on EDF-schedulability tests for systems of
sporadic tasks on preemptive uniprocessors (see, e.g. [7], [2])
has established that a necessary and sufficient condition for
sporadic task system τ to be EDF-schedulable upon a unit-
speed processor is the following [2]:

∀t : t ≥ 0 :
∑
τ`∈τ

max

(
0,

(⌊
t−Di

Ti

⌋
+ 1

)
× Ci

)
≤ t

B. Sustainability

The concept of sustainability [4, page 159] formalizes the
expectation that a scheduling algorithm or schedulability test
should be more effective upon systems that have at least one
task with reduced demand due to excess pessimism in task-
wise analysis.

Definition 1 (Sustainable schedulability test [1]). Consider
scheduling algorithm A, sporadic A-schedulability test F ,
A-schedulable by F task system τ , and τ generated job
release J . F is said to be a sustainable schedulability test
for A if and only if algorithm A meets all deadlines when
scheduling J even under any of the following changes to jobs
in J: (i) decreased execution requirements; (ii) larger relative
deadlines; and (iii) later arrival times with the restriction that
successive jobs of any task τi ∈ τ arrive at least Ti time units
apart.

Sustainability of schedulability tests, as defined in Defini-
tion 1, provides a guarantee that if a task system is deemed
schedulable by the test, it will not fail to meet all deadlines if
the system behaves “better” at run time than the specifications.
An additional notion of sustainability for schedulability tests,
called self-sustainability, was defined in [1]:

Definition 2 (self-sustainability [1]). A schedulability test is
self-sustainable if all task systems with “better” (less con-
straining) parameters than a task system deemed schedulable
by the test are also deemed schedulable by the test.

If a self-sustainable schedulability test is used, then sus-
tainable changes will not render schedulable sub-systems
unschedulable (or unverifiable).

II. PREEMPTION-COGNIZANT ANALYSIS

Figure 1 (a) depicts (with horizontal lines) a job with deadline
at tf that is executing initially. At time-instant t1, another job
(in checked lines) with an earlier deadline arrives and preempts
it. The durations devoted to context-switch operations are
depicted in the schedule as solid black boxes; there is one
such duration when the job is preempted, and another when
the preempted job is resumed. Let us refer to these costs
as the “context-switch save” and “context-switch restore”
costs respectively. With regards to the sporadic task model



(a) At time-instant t1, an executing job with deadline at tf is
preempted by a newly-arrived job with an earlier deadline.

(b) A job with deadline between those of the preempting and
preempted jobs arrives at time-instant t2.

Fig. 1. Time-line diagrams illustrating preemption of the job with deadline
at time-instant tf .

discussed above, let us enhance the model by associating with
each sporadic task τi the additional parameters csi, cssi, and
csri, satisfying the relationship (csi = cssi + csri). Here,
cssi denotes the maximum duration of time needed to save
the context associated with an executing job of τi that is
preempted, while csri denotes the maximum duration of time
needed to restore this context when the job is resumed; csi
denotes the maximum total overhead associated with each
preemption of a job of τi.

For the remainder of this paper assume as a notational
convenience, with no loss of generality, that tasks are indexed
by non-decreasing Di parameters.

Observation 1. Any preemption operation requires that two
sub-operations be performed: (i) a context-switch save opera-
tion when preemption occurs, and (ii) a context-switch restore
operation when the preempted job later resumes.

1) The save operation occurs before the preempting job’s
execution and preempting job’s deadline.

2) The restore operation need not complete prior to the
deadline of the preempting job.

3) The preempting job may not always be the one that
restores the context.

The third observation above is illustrated in Figure 1(b).

III. SUSTAINABILITY RESULTS

We now examine sustainability properties of preemptive
uniprocessor EDF in scheduling sporadic task systems with
respect to periods, WCET’s, context switch costs, and relative
deadline parameters of the individual tasks.

Theorem 1. The EDF scheduling of sporadic task systems
is sustainable with respect to WCET parameters and context
switch costs.

Proof. Given a task system τ with context switch costs, we
define a transformation from τ to a new task system τ ′ in
which all context switch costs are equal to zero:
• For any instance of τ , consider each job released by

each task, and each context switch operation (save/store
separately) to be unique jobs.

• For jobs of τ , create a job with the same release, deadline,
and WCET.

• For saves, create a job with WCET and relative dead-
line equal to the context-switch save cost, and release
equal to preempting job’s release (hence the job is non-
preemptable in any feasible schedule).

• For each restore operation, create a job with WCET equal
to the context-switch restore cost, release equal to the
release of the preempting job, and deadline earlier than
the preempted job’s deadline by some arbitrarily small
ε > 0

Consider EDF on τ ′. As a simple application of uniprocessor
EDF, since τ is schedulable and EDF is optimal (see, e.g., [3,
Sec 4.1 (p 29)])., EDF schedules τ ′ as well.

A reduction in the WCET of any job in τ ′ may model
a reduction in task WCET, task context-switch save cost, or
task context-switch restore cost. EDF is sustainable in the no
context switch cost case, so τ ′ is still schedulable.

The schedule produced by τ ′ is valid on a similarly modified
τ , so EDF is sustainable with respect to task WCET and
context switch costs.

Theorem 2. Implicit-deadline sporadic task systems are not
sustainable with respect to period parameters even if all csi
values are equal.

Proof. Consider the following task system:

τi Ci Ti csi
τ1 5 10 3
τ2 5 10 3

Both tasks have the same period parameter, so no premp-
tions occur and the system is schedulable under EDF.

If however τ2’s period is increased to 12, τ2’s job arrives
at time zero and τ1’s at time-instant 1, then τ2’s job gets
preempted; this results in a deadline miss.

IV. A SUFFICIENT EDF SCHEDULABILITY TEST

We start out with a couple of lemmas characterizing pre-
emptions. The following result is well known in the folk-lore
of real-time scheduling theory (see, e.g., [3, page 22]):

Lemma 1. The total number of preemptions in any EDF
schedule is no greater than the number of jobs that were
executed (minus one).

The following lemma identifies a further relationship between
any preempted job, and the job that preempts it:

Lemma 2. No job of τi is preempted by any job of τj , for
any j > i.



Proof. Observe that in order for a job j1 to be preempted by
another job j2 at some time-instant to, it is necessary that

1) Job j1 be executing at time-instant to;
2) Job j2 arrive at time-instant to; and
3) the deadline of j2 is earlier than the deadline of j1.

The third condition above may only be satisfied if the task that
generated job j2 has a smaller relative deadline than the task
that generated job j1; the lemma follows from the condition
that the tasks are indexed in non-decreasing order of relative
deadline parameters.

As was pointed out in Observation 1 (Section II), there are
two operations associated with each preemption. The context-
switch save operation must occur before the deadline of the
preempting job, but the context-switch restore operation may
occur after this deadline. Based upon Observation 1, it should
be clear that it is safe to “charge” the cost of the context-
switch save operation to the preempting job (in the sense
of inflating the execution time of the preempting job by the
amount of time required for the context-switch save operation,
and then assuming that the context-switch store operation takes
no time). But what about the context-switch restore operation?
— as is evident from Figure 1 (b), this operation may take
place well after the deadline of the preempting job. We will
argue in Lemma 3 below that it is safe to also charge this cost
to the preempting job. That is,
• Suppose that an executing job j is preempted by a job
j′, and let css(j) and csr(j) denote the durations of time
required to save the context upon preemption, and to
restore the context at a later point in time respectively.

• We will inflate the execution requirement of j′ by
an amount (css(j) + csr(j)), and then perform EDF
schedulability-analysis of the resulting collection of jobs
under the assumption that preemptions incur no overhead.

• If this EDF schedulability-analysis does not detect any
deadline misses, then there would have been no deadline
misses in the original schedule – the one in which
preemptions do incur costs.

This is formally stated in the following lemma

Lemma 3. If a sporadic task system is not EDF-schedulable
when preemption durations are considered, then it remains
unschedulable by EDF if (i) the execution time of each
preempting job is inflated by the sum of the context-switch save
and context-switch restore durations of the preempted jobs;
and (ii) the preemption durations are subsequently assumed
to be equal to zero.

Proof. Suppose that sporadic task system is unschedulable by
EDF when preemption durations are considered. Let I denote
some minimal collection of jobs generated by τ , upon which
EDF misses a deadline — by minimal, we mean that EDF
would not miss any deadlines upon scheduling any proper
subset of the jobs in I . Without loss of generality, assume
that the earliest release time of any job in I is time zero,
and let tf denote the time-instant at which the deadline miss
occurs.

• Since a deadline is missed at tf , it must be the case that
the processor is completely busy over the interval [0, tf ).

• The transformation defined in the lemma effectively
moves the duration of each context-switch restore to
before the deadline of the preempting job that caused it
— hence, the amount of execution needed by any time-
instant can only increase upon applying the transforma-
tion.

• When the transformation is applied to the jobs in I ,
therefore, it must remain the case that the processor
will be completely busy over the interval [0, tf ), and
the deadline that was missed in the original schedule is
missed in the schedule of the transformed collection of
jobs as well.

The lemma follows.

Lemmas 1-3 above allow us to define a “safe” trans-
formation from the problem of EDF-schedulability analysis
when preemption durations are non-zero to the problem of
EDF-schedulability analysis when preemption durations are
all equal to zero:

1) By Lemma 1, each job is responsible for at most one
preemption.

2) By Lemma 2, a job of τi may only be responsible for a
preemption of a job of τj for some j > i.

3) By Lemma 3, therefore, it is safe to inflate the execution
requirement of each job of τi by the maximum of
the preemption durations associated with any task τj ,
j > i (i.e., a quantity maxj>i{csj}), and subsequently
consider all preemption costs to be equal to zero.

This argument is formalized in the following theorem.

Theorem 3. A sporadic task system τ = {τ1, τ2, . . . , τn},
in which each task τi = (Ci, Di, Ti, csi) is character-
ized by its WCET, relative deadline, period, and context-
switch costs, is EDF-schedulable if the sporadic task system
τ ′ = {τ ′1, τ ′2, . . . , τ ′n} is EDF-schedulable, with each τ ′i =
(C ′i, Di, Ti, 0) and the C ′i’s defined as follows:

C ′i ← Ci +max
j>i
{csj} (1)

V. ONGOING WORK

We are currently working on developing less conservative
sufficient algorithms for preemption-cognizant schedulability
analysis of sporadic task systems. We are also exploring
computational complexity issues – although it is immedi-
ately evident (since it follows from prior results concerning
preemption-oblivious schedulability analysis) that preemption-
cognizant analysis is NP-hard for sporadic task systems in gen-
eral, we do not yet know whether such analysis is intractable
or not for implicit-deadline sporadic task systems.



REFERENCES

[1] Theodore Baker and Sanjoy Baruah. Sustainable multiprocessor schedul-
ing of sporadic task systems. In Proceedings of the EuroMicro Conference
on Real-Time Systems, Dublin, July 2008. IEEE Computer Society Press.

[2] S. Baruah, A. Mok, and L. Rosier. Preemptively scheduling hard-real-
time sporadic tasks on one processor. In Proceedings of the 11th Real-
Time Systems Symposium, pages 182–190, Orlando, Florida, 1990. IEEE
Computer Society Press.

[3] Sanjoy Baruah, Marko Bertogna, and Giorgio Buttazzo. Multiprocessor
Scheduling for Real-Time Systems. Springer Publishing Company, Incor-
porated, 2015.

[4] Sanjoy Baruah and Alan Burns. Sustainable scheduling analysis. In
Proceedings of the IEEE Real-time Systems Symposium, pages 159–168,
Rio de Janeiro, December 2006. IEEE Computer Society Press.

[5] Giorgio C. Buttazzo. Hard Real-Time Computing Systems: Predictable
Scheduling Algorithms and Applications. Second edition, 2005.

[6] J. Goossens T. Chapeaux G. Phavorin, P. Richard and C. Maiza. Schedul-
ing with preemption delays: anomalies and issues. In Proceedings of
the 23rd International Conference on Real-Time and Network Systems
(RTNS), 2015.

[7] C. Liu and J. Layland. Scheduling algorithms for multiprogramming in
a hard real-time environment. Journal of the ACM, 20(1):46–61, 1973.

[8] Aloysius Mok. Fundamental Design Problems of Distributed Systems for
The Hard-Real-Time Environment. PhD thesis, Laboratory for Computer
Science, Massachusetts Institute of Technology, 1983. Available as

Technical Report No. MIT/LCS/TR-297.


