
To appear at IEEE MICRO 2018

End-to-End Automated Exploit Generation

for Validating the Security of Processor Designs

Rui Zhang

University of North

Carolina at Chapel Hill

rzhang@cs.unc.edu

Calvin Deutschbein

University of North

Carolina at Chapel Hill

cd@cs.unc.edu

Peng Huang

Johns Hopkins University

huang@cs.jhu.edu

Cynthia Sturton

University of North

Carolina at Chapel Hill

csturton@cs.unc.edu

Abstract—This paper presents Coppelia, an end-to-end tool
that, given a processor design and a set of security-critical
invariants, automatically generates complete, replayable exploit
programs to help designers find, contextualize, and assess the se-
curity threat of hardware vulnerabilities. In Coppelia, we develop
a hardware-oriented backward symbolic execution engine with a
new cycle stitching method and fast validation technique, along
with several optimizations for exploit generation. We then add
program stubs to complete the exploit. We evaluate Coppelia
on three CPUs of different architectures. Coppelia is able to
find and generate exploits for 29 of 31 known vulnerabilities
in these CPUs, including 11 vulnerabilities that commercial and
academic model checking tools can not find. All of the generated
exploits are successfully replayable on an FPGA board. Moreover,
Coppelia finds 4 new vulnerabilities along with exploits in these
CPUs. We also use Coppelia to verify whether a security patch
indeed fixed a vulnerability, and to refine a set of assertions.

Index Terms—Symbolic Execution, Exploit Generation, Pro-
cessor Security

I. INTRODUCTION

This paper describes Coppelia, a tool to find, and generate

software exploits for, bugs in hardware designs. Given a

processor design and a set of security properties Coppelia

systematically explores the design using symbolic execution,

and if security violations are found Coppelia generates com-

plete, replayable exploits comprising both a trigger and the

payload. These exploits can help hardware designers analyze

and contextualize the nature of the security threat.

Exploitable bugs in hardware designs present an enticing

target to attackers [1], [2], [3], [4], [5]. Current practice in

hardware design verification combines formal static analysis

techniques with simulation-based testing, methods which can

successfully find assertion violations, but which do little to

differentiate bugs in the design from bugs in the assertion itself

or bugs in the environment set-up. Nor do they provide any

information to the designer about which bugs pose security

risks and which likely do not. Determining the root cause

for found violations typically involves inspecting waveforms

displaying the state of the signals and registers during the

clock cycles leading up to the violation. The process is difficult

and often tedious and requires cooperation between security

experts, hardware designers, and formal methods experts [6],

[7]. With Coppelia we present an end-to-end solution that can

automatically find bugs and demonstrate the security threat for

exploitable bugs in hardware designs.

Within the software security community, symbolic execu-

tion is a powerful technique for automatically generating test

cases to trigger security vulnerabilities [8]. It has a reputation

for relative ease of use, and we believe it can be brought to the

same level of utility and usability for hardware designs. The

use of software-style symbolic execution for hardware designs

has been proposed before [9], but not yet fully developed.

We take the next steps toward doing so in this paper. Using

open source, RISC CPUs to evaluate our methods, we show

that out-of-the-box symbolic execution does not scale to

full hardware designs, and we develop a hardware-oriented

backward symbolic execution engine that can.

Two characteristics of hardware designs require rethinking

the standard symbolic execution typically used in the software

domain. The symbolic execution of a hardware design repre-

sents an exploration of the design for a single clock cycle, but

hardware executes continuously, and security vulnerabilities

may only become apparent many clock cycles after the initial

state. Symbolic execution can never provide exhaustive cover-

age for systems with infinite execution trees [10]. As a further

complication, the large state space of a modern processor

design precludes joining redundant states during exploration,

as is sometimes done for software designs [11].

Second, security properties developed for hardware designs

capture the semantics of particular signals and their connecting

logic. By contrast, security properties developed for software

are applicable throughout a code base. For example, invalid- or

missing-bounds checks occur throughout a software code base,

and a symbolic execution engine that looks for such violations

is likely to find more examples just by exploring more broadly

and deeply. Compare this to, say, the security-critical property

of some RISC architectures that the general purpose register R0

should always be set to zero [12]. A violation of this property

will occur only in that part of the design that touches the R0

register. Finding such violations is akin to finding a needle in

a haystack; if an exhaustive search is not possible, a strategy

is needed to focus the search toward the target.

We propose in Coppelia a strategy of backward symbolic

execution (Section II-D). Starting at the point of an assert state-

ment, we symbolically execute the design backward searching

for a path from an assertion-violating state back to the reset

state. To handle symbolic execution across multiple clock

cycles, we propose a cycle stitching method (Section II-D6)

that can generate a complete sequence of instructions that

triggers a bug starting from the reset state. In comparison,

state-of-the-art hardware verification tools such as Cadence

IFV generate intermediate triggering input (Section IV-C). To

make Coppelia efficient as a practical tool, we leverage cone

of influence analysis and a search optimization, which we

term fast validation (Section II-D4). As is typical for symbolic

execution engines, Coppelia is sound, but not complete – the

assertion violations found are true violations and the exploits

returned are replayable on synthesized hardware, but Coppelia

may fail to find violations that exist.

To better analyze and assess the security consequences of

a found bug, we must move beyond the mere triggering of

the bug to the generation of complete exploit programs that

demonstrate a possible, concrete attack. Continuing with our

example, producing the sequence of instructions that let R0

be set to some non-zero value is useful in demonstrating

that a true bug exists; but generating an exploit that uses

the non-zero value to write arbitrary data to an arbitrarily

chosen address can clarify the security consequences of the

bug for hardware designers. This is important for informing

prioritization decisions. It is not always apparent to the person

verifying the design how severe a property violation may

be. Security properties are reused across generations of an

architecture, or even semi-automatically generated [12].

To extend a sequence of inputs beyond a bug trigger to a

full exploit, we need an appropriate payload. We observe that

hardware exploits differ based on the nature of the violated

property, rather than the nature of the bug or its trigger.

Therefore, in Coppelia we generate a payload stub for each

class of property (e.g., memory address related). The stub

extends a bug-triggering input into an exploit.

Coppelia is built on top of KLEE [13], a popular symbolic

execution engine. We adapt KLEE for the symbolic explo-

ration of hardware designs at the register transfer level (RTL)

and implement the backward symbolic execution engine.

We evaluate Coppelia on three processor designs: OR1200,

PULPino, and Mor1kx, representing two different RISC archi-

tectures: OR1k and RISC-V. To measure Coppelia’s efficacy

against a ground truth, we use known vulnerabilities described

in prior work [5], [12]. Coppelia finds and generates complete

exploits for 29 of the 31 known vulnerabilities on the evaluated

processors, including 11 vulnerabilities that Cadence IFV does

not find. All of the generated exploits are replayable on an

FPGA board. In addition, using existing security properties,

Coppelia finds four new bugs in these processors, and gener-

ates replayable exploit programs.

In summary, this paper presents the following contributions:

(1) We design and implement the first tool, to the best of

our knowledge, to generate software exploits, including both

a trigger and the payload, of processor designs; (2) We develop

the hardware-oriented backward symbolic execution engine to

enable a targeted search through the hardware design space

for rare assertion violations; (3) We evaluate the efficacy

and performance of Coppelia on three processors from two

different architectures. Our tool found four new security bugs

in two processors, and generated the exploits for these bugs;

(4) We demonstrate that security properties developed for one

architecture can be usefully applied to new architectures.

II. DESIGN

We first provide an overview of the three phases of Cop-

pelia: preprocessing, building a trigger, and adding the pay-

load. We then describe each phase in detail in the following

sections. Figure 1 shows the workflow of Coppelia.

We are targeting vulnerabilities in a processor design that

are exploitable, post-deployment, by software. We assume the

attacker does not modify the processor design, but is capable

of finding vulnerabilities that exist within the design. Post

deployment, we assume the attacker is able to send network

packets, execute a particular sequence of instructions, or both

on the target machine.

A. Overview of Coppelia

Coppelia takes as input an HDL implementation of a

hardware design and a set of security-critical assertions.

Preprocessing. To begin, Coppelia translates the RTL hard-

ware design from an HDL implementation to C++. We use the

Verilator tool [14] for this step and can translate designs writ-

ten in Verilog or SystemVerilog, although the basic approach

would apply to other HDLs as well. Translating the RTL

design to C++ allows us to take advantage of KLEE [13], a

mature symbolic execution engine, and use it as the foundation

of Coppelia. We discuss this step further in Section II-B. After

translation, Coppelia adds the security-critical assertions to the

generated testbench and compiles the newly translated design

to LLVM bytecode using the Clang compiler [15].

Building a trigger. A vulnerability is defined as a processor

state sn in which a security-critical assertion is violated.

Assertions are boolean-valued functions written over (a subset

of) the state-holding elements of the processor. They encode

desired security properties, and can express safety properties,

but not liveness [16] or hyperproperties [17]. The goal is to

find a sequence of inputs i0, i1, . . . , ik that take the system from

the initial state s0 to the violating state se. Coppelia builds the

sequence backwards, first finding input ik then ik−1 and so on.

Each input is found by symbolically exploring the processor.

Adding the payload. To better contextualize and analyze the

security threat, Coppelia goes beyond triggering the vulnera-

bility. It adds a program stub to complete the exploit. These

program stubs are generated according to the category of the

security-critical assertion violated. We describe this step in

detail in section II-F.

B. Preprocessing: Transcompiling RTL to C++

In the first phase, we use Verilator [14] to translate the RTL

Verilog to logically equivalent C++ code. Verilator is an open

source Verilog simulator. It compiles the synthesizable subset

of Verilog into cycle-accurate C++ or SystemC code.

Verilator starts with a preprocessing step in which it prop-

agates parameters, determines expression widths, eliminates

dead code, unrolls loops, and inlines modules and tasks. It also

Processor
RTL Design

(Verilog)

Security
Assertions

Processor
Code
(C++)

Exploit C
Program Triggering

Instructions

Clang BSEE

Verilator

Testbench

Processor
Bytecode

With
Assertions

Program
Stub

Generator

Fig. 1: Workflow of Coppelia. The process labeled BSEE is

the backward symbolic execution engine.

eliminates any possible 3-state by replacing don’t-care values

(X) with random values. Next, Verilator does the translation.

The translation of Verilog blocking statements is straightfor-

ward as these statements are semantically similar to that of

straight-line C++ code. On the other hand, the translation of

Verilog non-blocking statements requires additional analysis

as there is no semantic equivalent in C++ to the simultaneous

execution of multiple statements. Verilator imposes an order

on non-blocking assignments and introduces temporary C++

variables so that the resulting straight-line C++ code produces

a faithful simulation of the Verilog’s behavior at each clock

cycle boundary. Finally, Verilator cleans up the code, corrects

expression widths, and outputs the result in C++ [18].

In the resulting C++ code, each class corresponds to a

module in the Verilog code. The hierarchy of the C++ classes

matches the hierarchy of Verilog modules. The interface to the

top C++ class is an eval() function that calls the functions

inside each class necessary to simulate the processor design

for a single clock transition. There are two major loops inside

the eval() function: the initialize loop and the main change

loop. The initialize loop executes the initialization statements

and propagates the initial values through the design. The

main change loop executes circuit logic and propagates value

changes to each module (a C++ class). Two calls to the eval()

function represent a single clock cycle.

The input signals remain stable during a single execution of

the eval() function, meaning inputs will only change at clock

tick boundaries. This assumption ensures the circuit model

converges and improves the efficiency for the code analysis.

C. Background, Notation, and Definitions

Before describing how we build the trigger, we review sym-

bolic execution, introduce notation, and define the problem.

In standard forward symbolic execution input values are

replaced with symbols that represent the set of possible values

in the domain of the function. The symbolic exploration

of a program can be represented by a tree E . Each path

through the tree represents a path of execution taken during

the symbolic exploration. Each node represents a line of code

in the program; the root node represents the entry point and

the leaves represent an exit point. Associated with each node

is the current program state – the valuation of variables – and

a path condition. The path condition (π) for node n defines

constraints over the program’s input domain such that if the

program is run with input values satisfying the constraints,

execution would be driven down the path from root to n.

The symbolic exploration of a processor – achieved by

symbolically exploring two consecutive calls to the eval()

function – corresponds to one clock cycle of the design. The

root node of the resulting tree represents the state of the

processor at a clock-cycle boundary and each leaf of the

tree represents a possible next-state of the processor. When

referring to a processor state we are referring to a root or leaf

node in the symbolic execution tree, not an internal node; the

root and leaf nodes represent the processor at cycle boundaries.

We will refer to a tuple (n, i,π) associated with a symbolic

exploration tree E . The tuple defines a particular leaf node of

interest n, the inputs i that would guide execution from the root

node down the path to leaf node n, and the path constraints

π associated with leaf node n. We also define a test case as

a satisfying solution to a path constraint. A test case is one

set of concrete input values that will drive the processor down

the path associated with the path constraint.

The execution of multiple clock cycles in the processor is

represented by multiple symbolic explorations of the design

(see Figure 3). Each leaf node of a tree E j becomes a root

node for a tree E j+1 representing the next exploration of the

design, i.e., the next clock cycle of the processor.

We aim to find a sequence of inputs that will take the

processor from the reset state to an error state. We define the

problem in terms of symbolic exploration trees.

Problem Statement. Given se, an error state of the proces-

sor in which a security-critical assertion is violated, find a

sequence of symbolic exploration trees E0,E1, . . . ,Ek, and for

each tree a particular leaf node n0,n1, . . . ,nk such that

• The root node of the first tree E0 is the reset state of the

processor,

• The leaf node nk associated with tree Ek represents the error

state of the processor, and

• The leaf node n j associated with tree E j can be matched to

the root node of tree E j+1.

We say the leaf node of one tree can be matched to the root

node of a second tree if and only if the nodes are compatible:

concrete values are equal and constraints over symbolic values

given in one node are mutually satisfiable with constraints over

symbolic values given in the second node.

If the above requirements are satisfied then the sequence

of path constraints π0,π1, . . . ,πk provided by the sequence of

leaf nodes n0,n1, . . . ,nk define the sequence of inputs to the

processor that will take the processor from an initial state to

the error state.

D. Building the trigger: Backward Symbolic Execution

An error state that is M clock cycles away from the initial

state will only be found after 2M iterations of the eval()

loops. The search space for forward symbolic execution is

Violation

N

N

Y

Y

N

Y

Go to the previous instruction

No Violation

NY

< Bound

Last? Reset?

Exit

Trigger
Instructions

Cycle
Stitching

One Instruction Generation

Fast
Validation

Generate
Feedback

Fig. 2: Workflow of Backward Symbolic Execution

exponential in the number of loop iterations and becomes

untenable for even small values of M. (See Section II-D8 for

a discussion of the search complexity.)

The key insight of our work is that hardware is well suited

to a backward search strategy for symbolic execution. The

specificity of security assertions in hardware designs make

them amenable to such a targeted search strategy, and the

lack of dynamically linked libraries, pointers, and complex

computation makes the backward strategy possible.

Rather than start at the processor’s initial state and search

forward, Coppelia uses backward symbolic execution to start

at an error state and search backward. In the first iteration, the

backward symbolic execution engine looks for a procesor state

s that can reach an assertion failure in one clock cycle, given

the right set of inputs. If such an s is found, the problem

is ideally reduced: from finding a path of length M from

the initial state to the error state to finding a path of length

M−1 from the initial state to state s. The backward symbolic

execution engine continues in this way, stepping back from the

error state toward the initial state, one clock cycle at a time.

We cannot, in the general case, be sure that each iteration

actually reduces the problem. An intermediate state s may not

be reachable from the initial state, or we may find ourselves

stitching together a path that has a loop and never converges

toward the initial state. We introduce heuristics to help the

backward symbolic execution engine identify unreachable

states, loops, or paths that are not tending toward the initial

state.

1) Backward Symbolic Execution Engine: We describe the

workflow of our hardware-oriented backward symbolic exe-

cution engine (see Figure 2). In the following sections, we

describe each step in detail.

1) One Instruction Generation: In the first iteration, the

engine initializes input and internal signals to be sym-

bolic values and explores the processor design for one

complete clock cycle. In pipelined RISC processors, one

clock cycle represents the completion of one instruction. In

subsequent iterations, input signals are made symbolic, but

internal signals may be partially constrained or concrete.

(Sections II-D2 and II-D3.)

2) Assertion Violation: When the engine encounters an as-

sertion violation, it produces a path constraint describing

the precondition necessary to reach that error state. If

the processor’s reset state can satisfy the constraint, the

backward symbolic execution engine is done. It outputs

the trigger instruction(s) and Coppelia moves to the next

phase: adding the payload.

3) Fast Validation: If the processor’s reset state does not

satisfy the current path constraint, the engine does a fast

validation of the current intermediate state. This step uses

heuristics to eliminate intermediate states that are less

likely to bring the search closer to the reset state.

4) Bound Checking: If the current state passes the fast

validation, the engine then checks whether the sequence of

instructions generated so far exceeds a bound. The bound

is a tunable parameter to the engine.

5) Stitching Cycles: If the length of the sequence is within the

bound, the engine stitches the current state to the previously

found state and continues on to the next iteration of the One

Instruction Generation step.

6) Feedback Generation: When any of the preceding steps

fail, the engine goes back to the prior iteration and, using

feedback generated during prior runs, continues exploration

in a new direction.

2) One Instruction Generation: In the first iteration, the

backward symbolic execution engine starts the search for a

security property violation from an unconstrained processor

state. It sets both the input and the internal signals to sym-

bolic values, and then explores the processor design until it

reaches a state that violates the security property. If exploration

completes and no assertion violation is found, Coppelia returns

with a result of no violation found. Otherwise, the resulting

exploration tree, Ek, has a leaf node nk that represents the error

state (se) of the processor. Associated with that leaf node is

the path condition πk that describes the sufficient constraints

on processor state and input signals such that the processor

will move from the constrained state (se−1) to the error state

in a single clock cycle. In addition to the constraints, the

engine returns a satisfying solution to the constraints over

input signals. These concrete input values will form the last

instruction in the trigger sequence.

In the next iteration, the engine again starts the search

from an unconstrained processor state. This time the engine is

looking for se−1, a state that satisfies the constraints returned

in the prior iteration, but not se. If such a state is found, the

engine returns a path condition πk−1 and a satisfying solution

to the constraints over the input signals. These concrete input

values will form the penultimate instruction.

Iterations continue in this way, searching backward through

trees Ek,Ek−1, . . . ,E0 until we reach the initial processor state.

In the following sections we discuss the heuristics and opti-

mizations we introduce to help the search converge toward an

initial state.

3) Stateful Signals: A naive implementation of hardware

oriented symbolic execution might make all variables of type

reg symbolic because these internal signals can store state.

However, the resulting exploration tree is too large. Using this

set-up, we ran Coppelia for one clock cycle. After 24 hours it

had generated over 1 million test cases – each is a different

leaf node in the tree – but had not triggered any assertions.

We identify those signals that can be safely left concrete

without affecting completeness of the search. First, reg signals

are used in one of two ways in a hardware design: as part

of sequential logic in which case they store state from a

previous clock cycle, or as part of combinational logic in

which case their value depends only on input signals in

the current clock cycle. Using static analysis, we identify

those signals which depend entirely (albeit, possibly indirectly)

on input signals and do not make those symbolic in each

iteration of exploration. Second, not all reg signals are relevant

for a particular security property. Only those signals in the

property’s cone of influence are made symbolic. Section II-E3

describes the dependency analysis that Coppelia performs to

identify which signals to make symbolic.

4) Fast Validation: At the end of each successful iteration j,

the backward symbolic execution engine checks the following:

are the constraints given in path condition π j satisfied by the

initial state? If so, Coppelia has found a successful trigger and

moves on to the next phase, appending the payload.

If not, in order to steer the search toward the initial state,

we introduce two rules to eliminate those intermediate states

that are less likely to quickly lead back to the initial state.

These rules form the fast validation step.

Empirically, we found that if the number of variables whose

values are different from the initial state is small, we are more

likely to be able to back track to an initial state. We set the

number of differing variables to be:

diff((n j, i j ,π j),(n0, i0,π0))≤ ⌊|s|/4⌋+ 1 (1)

where (n0, i0,π0) is the tuple associated with the initial tree

E0, (n j, i j,π j) is the tuple associated with an intermediate tree

E j, diff calculates the number of different values between

two tuples, and |s| represents the number of internal symbolic

variables. With this rule, at most a quarter of internal state

variables may differ from their reset state.

The second rule targets loops that are preventing backward

progress toward the initial state. We enforce that each new

iteration should produce a tuple (n j, i j,π j) that is not the same

as any previously generated tuples:

(n j, i j,π j) /∈ {(nl , il ,πl) | j < l ≤ k} (2)

If the values of internal signals are the same as ones already

generated, we are not making any progress in this run and risk

entering an infinite loop. Thus, if the generated (s j, i j ,π j)-tuple

is a repeat, Coppelia will keep running until a different tuple

is found.

5) Bound Checking: As a final heuristic, Coppelia uses

bounded checking to counter the fact that the sequence of

trees may never converge toward the initial state. We set a

bound for the exploit length. If the trace of inputs generated

Cycle 1

Cycle 2

error state

Forward Symbolic Execution

error state

Backward Symbolic Execution

Fig. 3: Comparison of backward and forward symbolic exe-

cution for 2 clock cycles.

so far exceeds the bound, Coppelia will exit with a message

that it did not find an exploit within the bound.

6) Stitching Cycles: If the length of the sequence is within

the bound, we stitch the current clock cycle to the previous

clock cycle and continue with the next iteration. The sequence

of trees must be stitched together appropriately, making sure

a leaf node of one tree correctly aligns with the root node of

a tree previously generated.

Ideally, in order for the results of cycle E j and cycle E j−1

to align, we need to replace the values of internal signals in

node n j−1 with the path constraint π j obtained in node n j. This

ensures completeness – we will not miss a possible test case.

However, the complexity of this method is similar to forward

symbolic execution (see Section II-D8). The more cycles we

symbolically execute, the longer the path constraints will be

and the more complicated the queries will be to the SMT

solver. In Coppelia, we adopt a light-weight approach. The

insight is that while each clock cycle is explored symbolically,

the individual cycles can be stitched together using only

concrete values. This sacrifices completeness for speed: after

each iteration, we find satisfying solutions to a subset of the

internal signals and use these conrete values to partially define

the state to search for in the next iteration. This will no doubt

lead us to miss some possible violating paths. In practice,

we can iterate, incrementally replacing concrete values with

constrained symbols if no assertion violations are found.

7) Feedback Generation: If the engine finishes exploring

all paths and no violations are found and this is not the first

iteration (Figure 2), it means a violation was found in previous

runs but the engine chose a wrong path, either because of

the fast validation, the light-weight stitching, or because it

stopped exploring after finding one violation. In this case

Coppelia will go back to the previous runs and continue

the exploration. Coppelia generates a feedback to the engine

including which instruction causes the violation and what test

cases have been explored. When rerunning that instruction

generation, Coppelia only explores the specific instruction and

skips the test cases already explored.

8) Forward and Backward Symbolic Execution: In forward

symbolic execution, in the first clock cycle, a tree with N f

leaves will be explored (the N f black dots in the first layer of

the symbolic execution tree on the right in Figure 3). In the

second clock cycle, the tree must be explored again, once for

each of the N f leaves. Exploring forward M clock cycles has

complexity O(NM
f).

The complexity for backward symbolic execution is O(Nb ·
M), where M is the number of cycles to execute. Note that the

Nb here is larger than the N f in forward symbolic execution

because the internal signals are set to be symbolic values

which increases the paths to explore. On the other hand, in

general only j ≤ Nb paths are explored because exploration

stops once the error state is found. This is illustrated on the

left side of Figure 3.

E. Building the Trigger: Optimizations

Each iteration of the symbolic exploration of the processor

is expensive. We introduce the following optimizations tailored

for hardware designs to improve the speed.

1) Preconditioned Symbolic Execution: As an optimization,

Coppelia constrains the opcodes to only instructions in the ar-

chitecture to force the SMT solver to return legal instructions.

We also add constraints to support bit level representations.

In KLEE, the minimum width supported is a byte. However,

hardware signal widths are not necessarily byte multiples.

Thus, we add constraints to inform the symbolic execution

engine of the value range of such signals. For example, for a

signal of width n, we constrain the value of the signal to be

less than or equal to (2n− 1).
2) Path Selection Heuristic: We observe that if Coppelia

is exploring the right processor instruction, it will find the

vulnerability in a short time. However, it often takes a long

time before Coppelia starts exploring the right instruction. (In

our experience, the engine spends more than three hours to

analyze paths under 13 instructions.) To find vulnerabilities

more efficiently, Coppelia uses a hybrid search heuristic.

Coppelia selects the next symbolic execution state to run by

interleaving together breadth-first search and depth-first search

to both explore as many processor instructions in as short a

time as possible and explore each instruction in as much depth

as possible. Each of them are run in a fixed number of times

(chosen heuristically). We run depth-first more than breadth-

first to allow enough time for the engine to explore the paths

for each instruction.

3) Cone of Influence Analysis: In Coppelia, we apply a

cone of influence (CoI) analysis to reduce the search space.

The analysis is performed at the LLVM level during the static

analysis phase, and removes signals from the design whose

values do not affect, directly or indirectly, the value of signals

in the security-critical assertions.

In developing the CoI analysis we found that performing

the analysis at the function level was too conservative and led

to little or no pruning. Almost every function was found to

affect the function containing the assertion, but not all those

functions affected the assertion itself. Therefore, we perform

Algorithm 1: Cone of Influence Analysis

Input : A list of vars in the assertions varsInAssert
Output: A list of nodes in the graph nodeSet

1 trackedInstrs ← /0;
2 nodeSet ← /0;
3 dg ← BuildDependencyGraph();
4 for v ∈ varsInAssert do
5 vLocSet ← GetVarLocation(v);
6 for loc ∈ vLocSet do
7 nodes, instrs ← DependenceAnalysis(dg, loc,

trackedInstrs);
8 nodeSet ← nodeSet ∪ nodes;
9 trackedInstrs ← trackedInstrs ∪ instrs;

10 end
11 end

the dependency analysis at the instruction level. On the other

hand, pruning at the instruction level was too costly. Program

completeness could not be guaranteed and the symbolic execu-

tion engine had to check at each instruction whether to execute

it or not. Therefore, we perform the pruning at the function

level. Any function containing at least one instruction affecting

a signal in the assertion is kept; all other functions are pruned.

This hybrid approach allows us to prune aggressively while

maintaining program completeness and keeping the run-time

overhead low.

The first step of our CoI analysis (Algorithm 1) is de-

veloping an interprocedural dependency graph. Each function

forms a node and an edge from node a to node b is added

if the inputs to b depend on the outputs of a. The second

step is performing dependency analysis for the signals in the

security-critical assertions. We extract the target signals in the

assertions and get the location of these signals. Starting from

these locations, we search backward through functions to track

the LLVM instructions these signals depend on.

4) Compiler Optimizations: Verilator provides different

levels of compiler optimizations for improving simulation

performance [19]. We initially disabled optimizations and used

−O0 flag because higher optimization levels adversely affect

code readability and complicates the application of security-

critical assertions because many of the signals and variables

asserted over can be optimized out. Although using the −O0

flag confers significant readability benefits and eases assertion

application, it slows the symbolic execution (Section IV-D).

In Coppelia, we use the compiler optimizations to improve

performance (Section IV-D) and modify the assertions for the

optimized code.

F. Adding the Payload: Program Stubs

The sequence of instructions generated by the symbolic

execution engine only triggers the bug. To better understand

the security implications, we generate and append a payload

to complete the exploit. This is based on our observation that

although the triggers may differ, the same payload is often

used across multiple exploits. Thus, we can use similar stubs

for similar exploit situations.

Coppelia generates these program stubs according to the

category of the security-critical properties being violated. We

classified the security-critical properties into five classes as in

the SCIFinder project [12]: CF: control flow related properties,

XR: exception related properties, MA: memory access related

properties, IE: properties to ensure execution of the correct

and specified instructions, and CR: properties about correctly

updating results.

III. IMPLEMENTATION

Coppelia is primarily implemented in C++ and Python. We

build the state exploration part on top of KLEE, and the CoI

analysis is written as LLVM passes. When we implement

security assertions on the OR1200 processor in Cadence IFV

as part of the evaluation, we use SystemVerilog.

A. Testbench Generation

Coppelia provides an automatic process to generate a

testbench environment within which to verify the processor

design. This environment provides stimulus to input ports,

simulates the design, and checks for violations of security

assertions.

We first make all inputs symbolic and then assign these

symbolic values to input ports. The symbolic values are con-

strained by preconditions in order to generate legal instructions

(Section II-E1). The whole processor design is simulated twice

for each clock cycle (Section II-B). The simulation runs for

as many clock cycles as there are pipeline stages to allow

signals’ values to be propagated through the entire pipeline.

At the end of each clock cycle, we check whether security-

critical assertions are violated.

B. Translating Security Assertions

The initial security assertions that we collected (Sec-

tion IV-A) are developed specifically for the OR1200 proces-

sor, which is a 32-bit implementation of the OR1k architec-

ture with Harvard microarchitecture, 5-stage integer pipeline,

virtual memory support, and basic DSP capabilities. As part

of our effort to find new bugs in different platforms and

architectures, we also manually translate these assertions to

the Mor1kx-Espresso processor (OR1k architecture) and the

PULPino-RI5CY processor (RISC-V architecture).

The Mor1kx assertions correspond directly to OR1200

assertions because of their shared architecture so we need only

adapt the assertions to different variables and pipeline stages.

Assertions for the PULPino processor differ at a deeper level.

We need to first verify that the examined security properties

are still applicable to the new architecture. To do so we check

both the RISC-V specification and the PULPino processor

specification. We then adapt the assertions to appropriate

variables and pipeline stages. The translation took us 1 day for

the Mor1kx processor, and 2 days for the PULPino processor.

C. Program Stubs

For each category of the security-critical properties, we

implement a few program stubs to complete the exploits.

For some bugs, the instruction traces generated by symbolic

execution cannot be directly connected to the program stubs.

We manually implement the connecting code. Table I shows

the number of stubs for each category and the average lines of

code. As an example, the R0 bug belongs to the memory access

related category. The symbolic execution engine generates an

instruction sequence that stores a non-zero value to R0. We

then generate a program stub (in C) that exploits the bug by

triggering a memory access instruction that expects R0 to be

zero. This demonstrates that an attacker using this bug can

exploit it to write data to a memory locations as specified by

the attacker.

IV. EVALUATION

We evaluate Coppelia across multiple CPU designs to study

its efficacy and its practicality. Our evaluation aims to answer

the following research questions: 1) Can Coppelia effectively

generate high-quality exploits for known CPU security bugs?

2) How does Coppelia perform compared to hardware model

checking tools? 3) Is Coppelia practical for use on full-scale

CPU designs, and what effect do our optimizations have on

performance? 4) Can Coppelia be used to expose, and generate

complete exploits for, new CPU security-critical bugs?

A. Dataset and Experiment Setup

For our evaluation, we collected 31 security-critical bugs

(Table II) of the OR1200 processor from two prior papers,

SPECS [5] and SCIFinder [12]. We collected 35 security-

critical assertions from SPECS [5], Security Checkers [20],

and SCIFinder [12]. We translated 30 assertions for the

Mor1kx processor, and 26 assertions for the PULPino pro-

cessor. The experiments are performed on a machine with

Intel Xeon E5-2620 V3 12-core CPU (2.40GHz, a dual-socket

server) and 62G of available RAM.

B. Generating Exploits for Known Bugs

To evaluate the efficacy of our tool against a ground truth,

we test whether it can find and generate exploits for the

known bugs we collected. These security-critical bugs are

implemented in the OR1200 processor and we test Coppelia

on the core of the processor. We run Coppelia by making

both input signals and internal signals symbolic and executing

backward toward the reset state.

Table II summarizes the results. For bug b16 we did not have

an assertion. Bug b25 is a bug outside of the OR1200 core.

Thus, we are not able to generate exploits for these two cases.

In the remaining 29 cases, Coppelia is able to automatically

generate exploits to expose the known bug for all of them.

Overall, the generated exploits are concise, frequently only one

or two instructions (excluding the size of the stubs). We can

also see that for bugs that involve multiple cycles, Coppelia

can indeed generate a series of instructions to exercise these

deep error states.

For each generated exploit, we verify its ability to expose

a vulnerability by running it on an FPGA board (DE0Nano).

Each exploit contains a generated stub according to the type

Cat. Description Bug No. No. of Stubs Avg. LoC

CF Control flow related b20, b21, b27 2 15
XR Exception related b02, b03, b07, b08, b09, b10, b11, b14 , b15, b18, b19, b23, b29 3 29
MA Memory access related b17, b22, b24, b28, b30, b31 2 16
IE Correct instructions b06, b12 2 12
CR Correctly updating results b01, b04, b05, b13 2 13

Table I: Program stub categories for each bug and implementation details.

No. Synopsis
Instructions Generated Replayable

Coppelia Cadence EBMC Coppelia Cadence EBMC

b01 Privilege escalation by direct access 2 1 1 X ✕ ✕

b02 Privilege escalation by exception 2 ✕ ✕ X - -
b03 Privilege anti-de-escalation 1 1 1 X X X

b04 Register target redirection 3 1 1 X ✕ ✕

b05 Register source redirection 1 1 1 X X X

b06 ROP by early kernel exit 50 1 3 X ✕ ✕

b07 Disable interrupts by SR contamination 1 1 1 X X X

b08 EEAR contamination 1 ✕ ✕ X - -
b09 EPCR contamination on exception entry 2 ✕ ✕ X - -
b10 EPCR contamination on exception exit 2 1 8 X X X

b11 Code injection into kernel 2 1 1 X X X

b12 Selective function skip 1 1 1 X ✕ ✕

b13 Register source redirection 1 1 1 X X X

b14 Disable interrupts via micro arch 2 1 1 X X X

b15 l.sys in delay slot will enter infinite loop 2 ✕ ✕ X - -
b16 l.macrc immediately after l.mac stalls the pipeline - - - - - -
b17 l.extw instructions behave incorrectly 4 1 7 X ✕ ✕

b18 Delay Slot Exception bit is not implemented in SR 1 ✕ ✕ X - -
b19 EPCR on range exception is incorrect 1 ✕ ✕ X - -
b20 Comparison wrong for unsigned inequality with different MSB 3 1 1 X ✕ ✕

b21 Incorrect unsigned integer less-than compare 5 ✕ ✕ X - -
b22 Logical error in l.rori instruction 5 ✕ ✕ X - -
b23 EPCR on illegal instruction exception is incorrect 2 ✕ ✕ X - -
b24 GPR0 can be assigned 2 1 6 X ✕ ✕

b25 Incorrect instruction fetched after an LSU stall - - - - - -
b26 l.mtspr instruction to some SPRs in supervisor mode treated as l.nop 3 ✕ ✕ X - -
b27 Call return address failure with large displacement 2 1 1 X ✕ ✕

b28 Byte and half-word write to SRAM failure when executing from SDRAM 1 1 1 X X X

b29 Wrong PC stored during FPU exception trap 2 ✕ ✕ X - -
b30 Sign/unsign extend of data alignment in LSU 1 1 - X X -
b31 Overwrite of ldxa-data with subsequent st-data 1 1 - X X -

Table II: Generating exploits of collected bugs. The first 14 bugs are from SPECS [5] and the last 17 bugs are from SCIFinder [12]. The
Instructions Generated column shows the number of instructions generated; the Replayable column shows whether the generated exploits can
be replayable on an FPGA board. ✕ means either the triggering information cannot be generated or the generated exploit is not replayable.

assign a_lt_b = comp_op[3] ? ((a[width-1] & !b[width-1]) |

(!a[width-1] & !b[width-1] & result_sum[width-1]) |

(a[width-1] & b[width-1] & result_sum[width-1])) :

(a < b); // Bug Free Version

result_sum[width-1]; // Buggy Version

Listing 1: A security bug from OR1200 processor Bugzilla.

of the security assertion triggered by the bug (see Table I). As

shown in Table II, all the exploits are successfully replayed

on the FPGA board.

As an example, Listing 1 shows a security-critical bug

(b20) from the OR1200 processor Bugzilla database (Bugzilla

#51 [21]). The code snippet is from the ALU module in the

OR1200 processor. It shows the logic to determine whether

operand a is less than operand b. The buggy implementation

works fine in most cases, but it fails for the l.sfgtu (set flag

greater than equal) instruction. According to the OpenRISC

specification [22], the instruction l.sfgtu rA, rB compares

the contents of general-purpose registers rA and rB as unsigned

integers. If the value of the first register is greater than the

value of the second register, the compare flag is set; otherwise

the compare flag is cleared. However, with this bug, if the

highest-order bit in register rA is 1 the compare flag will not

be set, even if rA is greater than rB. An attacker can exploit

this bug to control which branch to execute. The security

bug violates the security-critical assertion: the comparison flag

should be set correctly. Listing 2 shows the generated exploit.

(The full payload is abbreviated for space reasons.) The total

CPU time required for generating this exploit is 9m40s. The

exploit is replayable on an FPGA board.

C. Comparison with Model Checking

A current standard for hardware verification is model

checking. In this section, we compare Coppelia against the

commercial hardware model checking tool, Cadence’s Incisive

Formal Verifier (IFV), and against a research tool, EBMC [23].

We use each tool to look for the known bugs from Section IV-B

void foo() {

printf("Attack success!\n"); // Payload

}

int main() {

gotoUserMode(); // Payload

asm volatile (// Trigger

l.movhi r16 0x8000;

l.nop;

l.sfgtu r16 r0;);

jumpToFoo(); // Payload

}

Listing 2: The exploit program generated by Coppelia.

and compare the results with Coppelia. We add the same

constraints (Section II-E1) in both Cadence IFV and EBMC.

The results are shown in Table II.

We make several observations:

(1) Cadence successfully finds and generates triggers for 18

bugs and EBMC for 16 bugs.

(2) Cadence fails to find or generate triggers for 11 bugs and

EBMC fails for 13 bugs. All of them are found by Coppelia.

Among these bugs, 8 of them (b02, b08, b09, b15, b18,

b19, b23, b29) are related to exception handling for managing

privilege levels in the processor. Although we could not

determine the exact reason why Cadence and EBMC fail

to find these bugs, we note that the relevant properties for

these bugs all include the condition (wb_insn == syscall).

However, both Cadence and EBMC can find bug b14, which

also relies on that same condition.

Bugs b21, b22, b26 are related to accessing register files.

The OR1200 processor uses two dual-port RAMs for imple-

menting register files. These two RAMs are written and read

at the same time so that the processor can read two registers

within a single clock cycle. However, we find that (operand_b

== 0) is always true when running both model checking

tools. This means data reading from ram_b is always 0, which

is incorrect. We suspect that Cadence and EBMC build an

incorrect model for the two RAMs.

EBMC fails to find and generate triggers for bugs b30 and

b31 because it fails to parse assertions with deep hierarchies.

(3) As a tool designed for assertion verification rather than

exploit generation, Cadence IFV only generates intermedi-

ate results when a property is invalidated. By contrast, the

complete trigger is generated in Coppelia. For example, for

bug b24 (the R0 bug described in the introduction) Cadence

generates the single instruction l.addi r0, r1, 0. This

instruction will only trigger the bug if r1 already holds a non-

zero value, which is not the case for the reset state (r1 is set

to 0 at reset). In the traces Cadence generates, a number of

signals are not in the reset state. It is nontrivial for designers

to set the processor to a particular state in order to trigger

the assertion. Table II shows that 12 exploits are not directly

replayable from the reset state. For EBMC, we have similar

results. Although EBMC returns multiple instructions, they are

not always directly replayable from the reset state.

(4) We currently remove the memory from the processor

and only run these tools on the processor core. When adding

the memory back, it took Cadence several hours to build the

model. It is necessary to rerun formal builds every time the

verilog is changed so this would be a significant impediment to

rapid development of bug fixes. Coppelia does not require long

model building time but it fails to handle the memory because

the queries to the solver are too long. We have not done

optimizations for memory models but research on optimizing

symbolic execution for arrays is ongoing [24] and could be

incorporated into future versions of Coppelia.

D. Effects of Optimizations

To evaluate the effectiveness of our optimizations (Sec-

tion II-E), we first randomly select six bugs which require

only one instruction to trigger (examining longer bugs without

optimizations took on the order of several days). For each

bug, we make input signals symbolic and run Coppelia for

one clock cycle, starting from the reset state. We show how

each optimization influences the performance of symbolic

execution. In the Original KLEE setup, we use KLEE’s de-

fault settings, i.e., random search heuristic, 2000M maximum

memory consumption, and counter example cache enabled. In

the Hybrid Search setup, we enable the hybrid search heuristic.

Specifically, we start with BFS and alternate the BFS and DFS.

The BFS is set to run 10,000 times and the DFS is set to run

500,000 times. In the Compiler Optimizations configuration,

we enable Verilator’s optimizations when generating C++ code

while keeping KLEE’s settings the same as the previous

column. In the CoI Analysis setup, we enable the CoI analysis

in addition to all the settings in the previous column.

Table III summarizes the results, from which we make

the following observations: (1) Adding all the optimizations

yields an average overall speedup of two-to-three orders of

magnitude compared to the original KLEE. On average, each

optimization can enhance the performance by about one order

of magnitude. (2) On average, the Hybrid Search heuristic

improves the performance the most. (3) Applying all opti-

mizations does not necessarily yield the best performance. For

example, for bug b09 and b13, applying only the hybrid search

heuristic can reduce the searching time to only 3 seconds, but

adding other optimizations increases the search time.

Table IV shows the result of the Cone of Influence Analysis.

Running the CoI Analysis can prune out a number of functions

for symbolic execution. The effects of the CoI Analysis mainly

depend on the security-critical assertions added. For the six

bugs we picked, the first five have three variables in the

assertions and the last one has four variables in the assertion.

On average, the CoI Analysis prunes out 8% of the LLVM

instructions and 30% of the functions. Table V shows that

using O3 level in the Compiler Optimizations can reduce 39%

of the C++ code generated. Figure 4 compares the performance

among different search heuristics. The upper figure shows the

number of instructions covered in the generated test cases

as time changes. The BFS covers the most instructions in a

given amount of time. The lower figure shows the number

of test cases per instruction generated as time changes. The

DFS generates the most test cases per instruction in the given

No.
Original Hybrid Search Compiler Optimizations CoI Analysis

Overall Speedup
Time Time Speedup Time Speedup Time Speedup

b05 3h50m5s 3m41s 62.47x 0m14s 15.54x 2m11s 0.11x 104.58x
b09 >24h 0m3s >28800x 15m59s 0.004x 4m37s 3.46x >311.91x
b10 19h30m49s 35m55s 32.60x 15m54s 1.16x 2m11s 7.32x 536.25x
b13 >24h 0m3s >28800x 0m15s 0.22x 2m12s 0.11x >654.55x
b24 19h31m33s 35m40s 32.85x 16m20s 2.18x 2m33s 6.42x 406.27x
b27 >24h >6h - 17m38s >27.22x 11m29s 1.54x >125.40

Avg. >19h >1.2h >11545x 11m3s >7.72x 4m12s 3.16x >356.49x

Table III: Effects of optimizations. This table is aggregative, e.g. Compiler Optimizations means that Coppelia is running with both Hybrid
Search and Compiler Optimizations on. Time columns show the CPU time. Speedup columns show the relative improvements in CPU time
compared to previous columns.

No. Func Func Left LLVM Instr Instr Left

b05 47 34 (72.3%) 12501 11505 (92.0%)
b09 47 33 (70.2%) 12458 11427 (91.7%)
b10 47 33 (70.2%) 12475 11444 (91.7%)
b13 47 34 (72.3%) 12504 11508 (92.0%)
b24 47 34 (72.3%) 12474 11478 (92.0%)
b27 47 34 (72.3%) 12485 11489 (92.0%)

Table IV: Details of the Cone of Influence Pruning.

Optimization Level Total LoC in C++

O0 14118
O3 8587 (61%)

Table V: Details of the Compiler Optimizations.

amount of time. Our hybrid search heuristic combines the

advantages of both the BFS and the DFS heuristics.

E. Performance

For the 29 bugs Coppelia successfully generates exploits,

18 (62%) out of 29 of the exploits are generated within 15

minutes, demonstrating that Coppelia can be a practical quality

control tool for hardware vendors. However, 2 (7%) out of 29

took a longer time (over 2 hours) to generate even for bugs

involving only a single instruction. We find two reasons for

the longer time: 1) Coppelia takes longer to reach the target

instruction either because making internal signals symbolic

increases the symbolic execution states to explore or because

the instruction is near the end of the queue of all instructions

to explore. 2) The bug is deep in the pipeline (in the 4th or

5th stage) and increasing the pipeline stages can dramatically

increase the number of symbolic execution states. If we only

run Coppelia for the target instruction (instead of all the

instructions in the ISA), the time for generating the exploits

can be reduced to only a few minutes.

F. Finding New Bugs

In this section, we examine Coppelia’s efficacy in find-

ing unknown bugs on new platforms and architectures. We

run Coppelia on two new processors: Mor1kx-Espresso and

PULPino-RI5CY. The Mor1kx is the most recent implemen-

tation of the OR1k architecture. We evaluate our tool on the

Espresso core which is a 32-bit implementation with 2-stage

integer pipeline and delay slot. The PULPino is an open-

source single-core 32-bit low-power processor based on the

RISC-V architecture. We evaluate our tool on the RI5CY core,

which is an in-order, RV32-ICM implementation with 4-stage

0

10

20

30

40

50

60

70

C
P
U
 I
n
st
ru

ct
io
n
s

DFS Only DFS+BFS BFS Only

0 10 20 30 40 50 60

Time(min)

0

100

200

300

400

500

T
e
st
 C
a
se

s/
C
P
U
 I
n
st
ru

ct
io
n
s

Fig. 4: Comparison of different search heuristics.

integer pipeline and DSP extensions. Table VI shows the new

security bugs and their exploits we found in Mor1kx-Espresso

processor and PULPino-RI5CY processor.

Bug b32 is the same as the motivating example R0 bug. This

bug was not fixed in the OR1200 processor and we still found

it in the new generation of OpenRISC processor. This shows

that security-critical bugs can persist to the next generation of

processor designs.

Bug b33 allows incorrect escalation of privilege. According

to the RISC-V specification, when the EBREAK instruction is

executed, the privilege mode’s epc register should be set to

the address of the EBREAK instruction itself [25]. However, in

RI5CY processor, we found that when the EBREAK instruction

is executed, the epc register is not correctly updated. This is

security critical because when the processor returns to user

mode, it will jump to an incorrect address.

Bug b34 allows incorrect de-escalation of privilege. In the

RISC-V specification, to return after handling a trap, the

SRET instruction sets the pc to the value stored in the epc

register [25]. However, pc is not set correctly when SRET is

executed in the RI5CY implementation. This can be exploited

by redirecting the program counter to an address of the

attacker’s choosing.

Bug b35 incorrectly updates the target pc of the jump

instruction. The RISC-V specification states that the target

No. Processor Security Property Instructions Replayable(ZedBoard)

b32 Mor1kx-Espresso Calculation of memory address / data is correct 2 X

b33 PULPino-RI5CY Privilege escalates correctly 1 X

b34 PULPino-RI5CY Privilege deescalates correctly 1 X

b35 PULPino-RI5CY Jumps update the target address correctly 1 X

Table VI: New security-critical bugs and exploits found in Mor1kx-Espresso and PULPino-RI5CY Processor.

Items No. of Assertions

Total Assertions 35
Pass Check 29
Fail Check (Bugs not fixed) 2
Fail Check (Wrong assertions) 4

Table VII: Security Patch Verification.

address of the indirect jump instruction is calculated by adding

the 12-bit signed I-immediate to the register rs1, then setting

the least-significant bit of the result to zero [25]. However, in

the processor, the LSB is never set to 0; the implementation

does not meet the specification. This may be leveraged by the

attacker to silently redirect the pc.

G. Verify Patches and Refine Assertions

While running Coppelia on known bugs (Section IV-B),

we also check the assertions by running Coppelia both on

the buggy processor and on the patched processor expecting

an exploit and no exploit respectively. While this is true for

most cases, we sometimes observe that even after a bug is

removed, Coppelia can still generate an exploit. This happens

because either the processor is still buggy or because the

assertions that we use based on prior work are not true

assertions (the assertion does not consider some uncommon

situation introduced by a correct patch because the assertions

are collected from a dynamic simulation [12]). As shown in

Table VII, for the 35 assertions we collected, 29 of them pass

this check. For the 6 assertions that fail, 2 fail because the

processor is still buggy (these 2 assertions pass the check after

the bugs are fixed) and 4 are not true assertions.

This phenomenon implies that in addition to using Coppelia

to generate exploits, we can also use Coppelia to verify

whether a security patch indeed fixed a vulnerability, and to

iteratively refine an initial set of assertions.

V. DISCUSSION

We encountered an instance where Verilator failed to re-

move some dead code. The backward symbolic execution

engine can, in this situation, fail to return a possible result.

Because in the first iteration execution begins from a fully

symbolic state, an assignment to variables that is only possible

from within the unreachable dead code may be returned as a

possible test case.

As with any symbolic execution engine operating over

a system with unbounded execution paths, Coppelia is not

complete and may fail to find vulnerabilities. There are two

sources of incompleteness: (1) vulnerabilities that exist in the

RTL may be optimized away during the translation to C++;

(2) some paths may remain unexplored.

More complex processors contain performance-enhancing

features such as speculative execution, caches, and out-of-

order execution. We expect our backward symbolic execution

strategy to be suited to such optimizations, and indeed may

have some advantages over model checking or simulation

based testing, but new heuristics and optimizations will be

needed. For example, out-of-order processors use caches for

register renaming. During the backward search, values in these

caches must be chosen carefully in order to be meaningful and

lead back to a reset state.

VI. RELATED WORK

Automatic Exploit Generation. A closely related line of

work is automatic exploit generation for software [26], [27],

[28], [29], [8], [30]. Typically, vulnerabilities (e.g., buffer

overflows) are first found through static or dynamic analysis,

and then program input satisfying identified constraints are

found. We tackle similar problems but differ in that we target

the hardware domain, which requires a stateful analysis across

multiple clock cycles to generate a series of input for hardware,

instead of a single input as in software.

Information Flow Security for Hardware. Efficiently track-

ing information flow in hardware has been studied [31], [32],

[33], [34], [35], but this approach often requires modifying or

extending the hardware architecture. Cherupalli et al. proposed

a gate-level symbolic simulation tool for information flow for

particular IoT applications [36]. Some works develop or extend

HDL for enforcing information flow security [37], [38], [39],

[40]. Although these works can prove that a hardware design

meets the security policies, they cannot verify those designs

not already implemented in these languages.

Assertion Based Verification for Security. Assertion based

verification uses simulation-based testing [41] or formal static

analysis [42], [43], [44] to search for violations of assertions

added to the design. Historically, functional properties were

used [45], but recently security properties have been consid-

ered. These security properties may be manually [46], [20],

[47], [5] or semi-automatically developed [12]. In this work

we make use of these security properties from the literature.

Hardware Symbolic Simulation. Software symbolic execu-

tion [48], [49], [8], [13], [11] explores program paths with

symbolic inputs [50]. Applying this technique to hardware

designs for verification and testing has also been studied [51],

[9]. STAR [51] is a functional input vector generation tool

combining symbolic and concrete simulation for RTL designs

over multiple time frames. It provides high range statements

and branch coverage, but is limited by the sequential depth

(around 6 cycles) [51]. PATH-SYMEX is a forward symbolic

execution engine that takes in ANSI-C interpretation of the

RTL code [9]. Its application is limited to small RTL designs.

VII. CONCLUSION

We have presented Coppelia, an end-to-end tool for an-

alyzing and contextualizing the security threat of hardware

vulnerabilities. Given a processor design and a set of security

properties, Coppelia generates C programs with inline assem-

bly that exploit bugs within the design. Coppelia is able to

generate exploits for 29 known bugs on the OR1200 processor,

and discovered and generated exploit programs for 4 unknown

bugs across two different processors and architectures.

ACKNOWLEDGMENTS

We would like to thank the anonymous reviewers for their

helpful feedback. This material is based upon work sup-

ported by the National Science Foundation under Grants No.

CNS-1651276 and CNS-1816637, and by a Google Faculty

Research Award. Any opinions, findings, conclusions, and

recommendations expressed in this paper are solely those of

the authors.

REFERENCES

[1] “Intel Skylake/Kaby Lake processors: broken hyper-threading,” https://
lists.debian.org/debian-devel/2017/06/msg00308.html, June 2017.

[2] “Xen security advisory CVE-2015-5307,CVE-2015-8104 / XSA-156,”
http://xenbits.xen.org/xsa/advisory-156.html, Nov 2015.

[3] “Intel Core i7-600, i5-500, i5-400 and i3-300 Mobile
Processor Series,” Specification Update, 2014. [Online]. Avail-
able: http://www.intel.com/content/dam/www/public/us/en/documents/
specification-updates/core-mobile-spec-update.pdf

[4] “Revision Guide for AMD Family 16h Models 00h-0Fh Processors,”
Product Revision, 2013. [Online]. Available: http://support.amd.com/
TechDocs/51810_16h_00h-0Fh_Rev_Guide.pdf

[5] M. Hicks, C. Sturton, S. T. King, and J. M. Smith, “SPECS:
A Lightweight Runtime Mechanism for Protecting Software from
Security-Critical Processor Bugs,” in Proceedings of the Twentieth

International Conference on Architectural Support for Programming

Languages and Operating Systems, ser. ASPLOS ’15. New York,
NY, USA: ACM, 2015. [Online]. Available: http://doi.acm.org/10.1145/
2694344.2694366

[6] K. Karnane and C. Goss, “Automating root-cause analysis to reduce
time to find bugs by up to 50%,” Cadence Design Systems, Tech. Rep.,
2015. [Online]. Available: www.cadence.com/rl/Resources/whitepapers/
indago_debug_platform_wp.pdf

[7] D. Maksimovic, “Novel Directions in Debug Automation for Sequential
Digital Designs in a Modern Verification Environment,” Master’s thesis,
University of Toronto, Canada, 2015.

[8] S. K. Cha, T. Avgerinos, A. Rebert, and D. Brumley, “Unleashing
Mayhem on Binary Code,” in Proceedings of the 2012 IEEE Symposium

on Security and Privacy, ser. SP ’12. Washington, DC, USA: IEEE
Computer Society, 2012. [Online]. Available: http://dx.doi.org/10.1109/
SP.2012.31

[9] R. Mukherjee, D. Kroening, and T. Melham, “Hardware Verification
using Software Analyzers,” in Proceedings of the IEEE Computer

Society Annual Symposium on VLSI (ISVLSI). IEEE, 2015.

[10] S. T. King, J. Tucek, A. Cozzie, C. Grier, W. Jiang, and Y. Zhou,
“Designing and implementing malicious hardware,” in Proceedings of

the First USENIX Workshop on Large-Scale Exploits and Emergent

Threats (LEET), April 2008.

[11] D. Davidson, B. Moench, T. Ristenpart, and S. Jha, “FIE on firmware:
Finding vulnerabilities in embedded systems using symbolic execution,”
in Proceedings of the 22nd USENIX Security Symposium. Washington,
D.C.: USENIX, 2013. [Online]. Available: https://www.usenix.org/
conference/usenixsecurity13/technical- sessions/paper/davidson

[12] R. Zhang, N. Stanley, C. Griggs, A. Chi, and C. Sturton,
“Identifying Security Critical Properties for the Dynamic Verification
of a Processor,” in Proceedings of the Twenty-Second International

Conference on Architectural Support for Programming Languages and

Operating Systems, ser. ASPLOS ’17. New York, NY, USA: ACM,
2017. [Online]. Available: http://doi.acm.org/10.1145/3037697.3037734

[13] C. Cadar, D. Dunbar, and D. Engler, “KLEE: Unassisted and Automatic
Generation of High-Coverage Tests for Complex Systems Programs,” in
USENIX Symposium on Operating Systems Design and Implementation

(OSDI), 2008. [Online]. Available: http://klee.github.io/

[14] “Verilator,” https://www.veripool.org/wiki/verilator.

[15] “Clang: a C language family frontend for LLVM.” [Online]. Available:
https://clang.llvm.org/

[16] B. Alpern and F. B. Schneider, “Recognizing safety and liveness,”
Distributed computing, vol. 2, 1987.

[17] M. R. Clarkson and F. B. Schneider, “Hyperproperties,” J. Comput.

Secur., vol. 18, Sep. 2010. [Online]. Available: http://dl.acm.org/citation.
cfm?id=1891823.1891830

[18] W. Snyder, “Verilator,” https://www.veripool.org/papers/verilator_
philips_internals.pdf, 2005.

[19] J. Bennett, “High Performance SoC Modeling with Verilator,” http://
www.embecosm.com/appnotes/ean6/embecosm-or1k-verilator- tutorial-
ean6-issue-1.html, 2009.

[20] M. Bilzor, T. Huffmire, C. Irvine, and T. Levin, “Security Checkers:
Detecting processor malicious inclusions at runtime,” in Hardware-

Oriented Security and Trust (HOST), 2011 IEEE International Sym-

posium on, June 2011.

[21] “Comparison wrong for unsigned inequality with different MSB.”
[Online]. Available: http://bugzilla.opencores.org/show_bug.cgi?id=51

[22] D. Lampret, “OpenRISC 1000 Architecture Manual,” https://github.com/
openrisc/doc/blob/master/openrisc-arch-1.1-rev0.pdf?raw=true, 2014.

[23] D. Kroening and M. Purandare, “EBMC: The enhanced bounded model
checker.” [Online]. Available: http://www.cprover.org/ebmc/

[24] D. M. Perry, A. Mattavelli, X. Zhang, and C. Cadar., “Accelerating Array
Constraints in Symbolic Execution,” in Proceedings of the 26th ACM

SIGSOFT International Symposium on Software Testing and Analysis.
ACM, 2010.

[25] K. A. Andrew Waterman, “The RISC-V Instruction Set Manual Volume
II: Privileged Architecture Version 1.10,” https://riscv.org/specifications/
privileged- isa/, 2017.

[26] D. Brumley, P. Poosankam, D. Song, and J. Zheng, “Automatic patch-
based exploit generation is possible: Techniques and implications,” in
Proceedings of the 2008 IEEE Symposium on Security and Privacy,
ser. SP ’08. Washington, DC, USA: IEEE Computer Society, 2008.
[Online]. Available: https://doi.org/10.1109/SP.2008.17

[27] S. Heelan, “Automatic Generation of Control Flow Hijacking Exploits
for Software Vulnerabilities,” 2009. [Online]. Available: http://www.
cprover.org/dissertations/thesis-Heelan.pdf

[28] T. Avgerinos, S. K. Cha, B. L. T. Hao, and D. Brumley, “AEG:
Automatic Exploit Generation,” in Network and Distributed System

Security Symposium, Feb. 2011.

[29] T. Avgerinos, S. K. Cha, A. Rebert, E. J. Schwartz, M. Woo, and
D. Brumley, “Automatic Exploit Generation,” Commun. ACM, vol. 57,
Feb. 2014. [Online]. Available: http://doi.acm.org/10.1145/2560217.
2560219

[30] T. Bao, R. Wang, Y. Shoshitaishvili, and D. Brumley, “Your Exploit is
Mine: Automatic Shellcode Transplant for Remote Exploits,” in 2017

IEEE Symposium on Security and Privacy (SP), May 2017.

[31] M. Dalton, H. Kannan, and C. Kozyrakis, “Raksha: A Flexible
Information Flow Architecture for Software Security,” in Proceedings

of the 34th Annual International Symposium on Computer Architecture,
ser. ISCA ’07. New York, NY, USA: ACM, 2007. [Online]. Available:
http://doi.acm.org/10.1145/1250662.1250722

[32] G. Venkataramani, I. Doudalis, Y. Solihin, and M. Prvulovic, “Flex-
iTaint: A programmable accelerator for dynamic taint propagation,”
in 2008 IEEE 14th International Symposium on High Performance

Computer Architecture, Feb 2008.

[33] H. Chen, X. Wu, L. Yuan, B. Zang, P.-c. Yew, and F. T. Chong,
“From Speculation to Security: Practical and Efficient Information
Flow Tracking Using Speculative Hardware,” in Proceedings of the

35th Annual International Symposium on Computer Architecture, ser.
ISCA ’08. Washington, DC, USA: IEEE Computer Society, 2008.
[Online]. Available: http://dx.doi.org/10.1109/ISCA.2008.18

https://lists.debian.org/debian-devel/2017/06/msg00308.html
https://lists.debian.org/debian-devel/2017/06/msg00308.html
http://xenbits.xen.org/xsa/advisory-156.html
http://www.intel.com/content/dam/www/public/us/en/documents/specification-updates/core-mobile-spec-update.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/specification-updates/core-mobile-spec-update.pdf
http://support.amd.com/TechDocs/51810_16h_00h-0Fh_Rev_Guide.pdf
http://support.amd.com/TechDocs/51810_16h_00h-0Fh_Rev_Guide.pdf
http://doi.acm.org/10.1145/2694344.2694366
http://doi.acm.org/10.1145/2694344.2694366
www.cadence.com/rl/Resources/white papers/indago_debug_platform_wp.pdf
www.cadence.com/rl/Resources/white papers/indago_debug_platform_wp.pdf
http://dx.doi.org/10.1109/SP.2012.31
http://dx.doi.org/10.1109/SP.2012.31
https://www.usenix.org/conference/usenixsecurity13/technical-sessions/paper/davidson
https://www.usenix.org/conference/usenixsecurity13/technical-sessions/paper/davidson
http://doi.acm.org/10.1145/3037697.3037734
http://klee.github.io/
https://www.veripool.org/wiki/verilator
https://clang.llvm.org/
http://dl.acm.org/citation.cfm?id=1891823.1891830
http://dl.acm.org/citation.cfm?id=1891823.1891830
https://www.veripool.org/papers/verilator_philips_internals.pdf
https://www.veripool.org/papers/verilator_philips_internals.pdf
http://www.embecosm.com/appnotes/ean6/embecosm-or1k-verilator-tutorial-ean6-issue-1.html
http://www.embecosm.com/appnotes/ean6/embecosm-or1k-verilator-tutorial-ean6-issue-1.html
http://www.embecosm.com/appnotes/ean6/embecosm-or1k-verilator-tutorial-ean6-issue-1.html
http://bugzilla.opencores.org/show_bug.cgi?id=51
https://github.com/openrisc/doc/blob/master/openrisc-arch-1.1-rev0.pdf?raw=true
https://github.com/openrisc/doc/blob/master/openrisc-arch-1.1-rev0.pdf?raw=true
http://www.cprover.org/ebmc/
https://riscv.org/specifications/privileged-isa/
https://riscv.org/specifications/privileged-isa/
https://doi.org/10.1109/SP.2008.17
http://www.cprover.org/dissertations/thesis-Heelan.pdf
http://www.cprover.org/dissertations/thesis-Heelan.pdf
http://doi.acm.org/10.1145/2560217.2560219
http://doi.acm.org/10.1145/2560217.2560219
http://doi.acm.org/10.1145/1250662.1250722
http://dx.doi.org/10.1109/ISCA.2008.18

[34] M. Tiwari, H. M. Wassel, B. Mazloom, S. Mysore, F. T. Chong,
and T. Sherwood, “Complete Information Flow Tracking from the
Gates Up,” in Proceedings of the 14th International Conference on

Architectural Support for Programming Languages and Operating

Systems, ser. ASPLOS XIV. New York, NY, USA: ACM, 2009.
[Online]. Available: http://doi.acm.org/10.1145/1508244.1508258

[35] A. Ardeshiricham, W. Hu, J. Marxen, and R. Kastner, “Register
Transfer Level Information Flow Tracking for Provably Secure
Hardware Design,” in Proceedings of the Conference on Design,

Automation & Test in Europe, ser. DATE ’17. 3001 Leuven,
Belgium, Belgium: European Design and Automation Association,
2017. [Online]. Available: http://dl.acm.org/citation.cfm?id=3130379.
3130775

[36] H. Cherupalli, H. Duwe, W. Ye, R. Kumar, and J. Sartori, “Software-
based Gate-level Information Flow Security for IoT Systems,” in
Proceedings of the 50th Annual IEEE/ACM International Symposium

on Microarchitecture, ser. MICRO-50 ’17. New York, NY, USA:
ACM, 2017. [Online]. Available: http://doi.acm.org/10.1145/3123939.
3123955

[37] X. Li, M. Tiwari, J. K. Oberg, V. Kashyap, F. T. Chong, T. Sherwood,
and B. Hardekopf, “Caisson: A Hardware Description Language for
Secure Information Flow,” in Proceedings of the 32Nd ACM SIGPLAN

Conference on Programming Language Design and Implementation,
ser. PLDI ’11. New York, NY, USA: ACM, 2011. [Online]. Available:
http://doi.acm.org/10.1145/1993498.1993512

[38] X. Li, V. Kashyap, J. K. Oberg, M. Tiwari, V. R. Rajarathinam,
R. Kastner, T. Sherwood, B. Hardekopf, and F. T. Chong, “Sapper:
A Language for Hardware-level Security Policy Enforcement,” in
Proceedings of the 19th International Conference on Architectural

Support for Programming Languages and Operating Systems, ser.
ASPLOS ’14. New York, NY, USA: ACM, 2014. [Online]. Available:
http://doi.acm.org/10.1145/2541940.2541947

[39] D. Zhang, Y. Wang, G. E. Suh, and A. C. Myers, “A Hardware
Design Language for Timing-Sensitive Information-Flow Security,” in
Proceedings of the Twentieth International Conference on Architectural

Support for Programming Languages and Operating Systems, ser.
ASPLOS ’15. New York, NY, USA: ACM, 2015. [Online]. Available:
http://doi.acm.org/10.1145/2694344.2694372

[40] A. Ferraiuolo, R. Xu, D. Zhang, A. C. Myers, and G. E. Suh,
“Verification of a Practical Hardware Security Architecture Through
Static Information Flow Analysis,” in Proceedings of the Twenty-Second

International Conference on Architectural Support for Programming

Languages and Operating Systems, ser. ASPLOS ’17. New York,
NY, USA: ACM, 2017. [Online]. Available: http://doi.acm.org/10.1145/
3037697.3037739

[41] L.-T. Wang, Y.-W. Chang, and K.-T. Cheng, Electronic Design Automa-

tion: Synthesis, Verification, and Test. Morgan Kaufmann, 2009.

[42] R. Brayton and A. Mishchenko, “ABC: An Academic Industrial-Strength
Verfication Tool,” in Comuter Aided Verification (CAV). Lecture Notes
in Computer Science, 2010.

[43] D. Brand, “Verification of Large Synthesized Designs,” in Proceedings

of the IEEE/ACM International Conference on Computer Aided Design

(ICCAD-93). IEEE, 1993.

[44] D.Lin, E.Singh, C.Barrett, and S.Mitra, “A structured approach to post-
silicon validation and debug using symbolic dquick error detection,” in
Proceedings of the IEEE International Test Conference, 2015.

[45] H. Foster, Applied Assertion-Based Verification: An Industry Perspective,
ser. Foundations and Trends(r) in Electronic Design Automation. Now
Publishers, 2009. [Online]. Available: https://books.google.com/books?
id=hL6d2t6Oh4EC

[46] M. Abramovici and P. Bradley, “Integrated Circuit Security: New
Threats and Solutions,” in Proceedings of the 5th Annual Workshop on

Cyber Security and Information Intelligence Research: Cyber Security

and Information Intelligence Challenges and Strategies, ser. CSIIRW
’09. New York, NY, USA: ACM, 2009. [Online]. Available: http://
doi.acm.org/10.1145/1558607.1558671

[47] M. Bilzor, T. Huffmire, C. Irvine, and T. Levin, “Evaluating security
requirements in a general-purpose processor by combining assertion
checkers with code coverage,” in Hardware-Oriented Security and Trust

(HOST), 2012 IEEE International Symposium on. IEEE, 2012.

[48] C. Cadar, V. Ganesh, P. M. Pawlowski, D. L. Dill, and D. R. Engler,
“EXE: Automatically Generating Inputs of Death,” in Proceedings

of the 13th ACM Conference on Computer and Communications

Security, ser. CCS, 2006. [Online]. Available: http://doi.acm.org/10.
1145/1180405.1180445

[49] P. Godefroid, M. Y. Levin, and D. Molnar, “SAGE: Whitebox Fuzzing
for Security Testing,” Queue, vol. 10, Jan. 2012. [Online]. Available:
http://doi.acm.org/10.1145/2090147.2094081

[50] J. C. King, “Symbolic Execution and Program Testing,” Communications

of the ACM, vol. 19, Jul. 1976. [Online]. Available: http://doi.acm.org/
10.1145/360248.360252

[51] L. Liu and S. Vasudevan, “STAR: Generating input vectors for design
validation by static analysis of RTL,” in IEEE International Workshop

on High Level Design Validation and Test Workshop. IEEE, 2009.

http://doi.acm.org/10.1145/1508244.1508258
http://dl.acm.org/citation.cfm?id=3130379.3130775
http://dl.acm.org/citation.cfm?id=3130379.3130775
http://doi.acm.org/10.1145/3123939.3123955
http://doi.acm.org/10.1145/3123939.3123955
http://doi.acm.org/10.1145/1993498.1993512
http://doi.acm.org/10.1145/2541940.2541947
http://doi.acm.org/10.1145/2694344.2694372
http://doi.acm.org/10.1145/3037697.3037739
http://doi.acm.org/10.1145/3037697.3037739
https://books.google.com/books?id=hL6d2t6Oh4EC
https://books.google.com/books?id=hL6d2t6Oh4EC
http://doi.acm.org/10.1145/1558607.1558671
http://doi.acm.org/10.1145/1558607.1558671
http://doi.acm.org/10.1145/1180405.1180445
http://doi.acm.org/10.1145/1180405.1180445
http://doi.acm.org/10.1145/2090147.2094081
http://doi.acm.org/10.1145/360248.360252
http://doi.acm.org/10.1145/360248.360252

