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In a cyclic executive, a series of pre-determined frames are executed in sequence; once 
the series is complete the sequence is repeated. Within each frame individual units of 
computation are executed, again in a pre-specified sequence. Although they suffer from a 
number of limitations, cyclic executives have the advantage of being fully deterministic, 
and may be implemented with very low runtime overhead; as a consequence of these 
advantages, run-time schedulers in highly safety-critical real-time systems have historically 
been implemented as cyclic executives.
Industrial applications of the cyclic executive framework are currently primarily restricted 
to uniprocessor platforms; in this paper, we consider the implementation of cyclic 
executives upon multi-core platforms. We present a Linear Programming (LP) based 
formulation of the problem of constructing cyclic executives upon multiprocessors for a 
particular kind of recurrent real-time workload — collections of implicit-deadline periodic 
tasks. We describe techniques for solving the LP formulation under different kinds of 
restrictions in order to obtain preemptive and non-preemptive cyclic executives. Our 
algorithms for constructing preemptive cyclic executives have running time polynomial 
in the size of the cyclic executive. We present an exact algorithm for constructing non-
preemptive cyclic executives that has worst-case running time exponential in the size 
of the cyclic executive; however, state-of-the-art LP solvers appear to often be able to 
construct fairly large cyclic executives in a reasonable amount of time. We also present 
an approximation algorithm for constructing non-preemptive cyclic executives that does 
run in polynomial time, and evaluate the effectiveness of this approximation algorithm 
both theoretically via the speedup factor metric, and experimentally via experiments on 
synthetically generated workloads. We additionally identify a particular restricted kind 
of workload that is quite commonly found in practice, for which non-preemptive cyclic 
executives can be constructed more efficiently than in the general case.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction and motivation

Real-time scheduling theory has made great advances over the past several decades. This includes the development 
of expressive models for representing real-time workloads (see, e.g., [1,2] for excellent surveys), comprehensive algorith-
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Table 1
Summary of cyclic-executive (CE) synthesis methodologies discussed in this paper. Both preemptive and non-preemptive CEs are considered. Preemptive CEs 
may be constructed exactly by formulating and solving an LP, or by constructing a graph and solving a network-flow problem on this graph. Non-preemptive 
CEs may be constructed exactly by formulating and solving an ILP, or approximately by solving a linear relaxation of this ILP.

Context Representation Method for schedule construction Precision

Preemptive Linear Program (LP) From LP solution Exact
Preemptive Graph Network-flow based Exact
Non-preemptive Integer LP (ILP) From ILP solution Exact
Non-preemptive ILP From solution to an LP-relaxation of ILP Approximate

mic frameworks for scheduling, resource-allocation and synchronization in uniprocessor and multiprocessor environments, 
sophisticated techniques and insights enabling ever-more-efficient implementation of real-time systems, etc.

Despite all these advances, however, our interactions with industrial collaborators in highly safety-critical application 
domains, particularly those (such as avionics) that are subject to stringent certification requirements, reveal that the use of 
the cyclic executive approach [3,4] remains surprisingly wide-spread for scheduling safety-critical systems.

A cyclic executive is a simple deterministic scheme that consists, for a single processor, of the repeated execution of a 
series of frames (or minor cycles as they are often called). Each frame comprises a sequence of jobs. They execute in their 
defining sequence and must complete by the end of the frame. The set of frames is called the major cycle. Despite there being 
a number of drawbacks to using cyclic executives (some of which are discussed in Section 2), the cyclic executive approach 
offers two significant advantages, predictability and low run-time overhead, that are responsible for their widespread and 
continuing use for scheduling highly safety-critical systems (these advantages are also briefly discussed in Section 2).

Highly safety-critical real-time systems have traditionally been implemented upon custom-built processors that are 
designed to guarantee predictable timing behavior during run-time. Such processors are typically single-core to ensure 
predictability; hence most current techniques for constructing cyclic executives yield uniprocessor CEs. As safety-critical 
software has become ever more computation-intensive, however, it has proved too expensive to custom-built hardware 
powerful enough to accommodate the computational requirements of such software; hence, there is an increasing trend 
towards implementing safety-critical systems upon commercial off-the-shelf (COTS) platforms. Most COTS processors today 
tend to be multi-core ones; this motivates our research described here into the construction of CEs that are suitable for 
execution upon multi-core processors.

This research. We derive various approaches to constructing cyclic executives for implicit-deadline periodic task systems 
upon identical multiprocessor platforms; these approaches are summarized in Table 1. Many of these approaches share 
the commonality that they are based upon formulating the schedule construction problem as a linear program (LP). Cyclic 
executives in which jobs may be preempted can be derived from solutions to such LPs; since efficient polynomial-time 
algorithms are known for solving LPs, this approach enables us to design algorithms for constructing preemptive CEs that 
have running time polynomial in the size of the CE.

In order to construct non-preemptive CEs from a solution to the LP, the LP must be further constrained to require 
that some variables may only take on integer values: this is an integer linear program, or ILP. Solving an ILP is known 
to be NP-hard [5], and hence unlikely to be solvable exactly in polynomial time. Despite this inherent intractability of 
solving ILPs, however, the optimization community has recently been devoting immense effort to devise extremely efficient 
implementations of ILP solvers, and highly optimized libraries with such efficient implementations are widely available 
today. Modern ILP solvers, particularly when running upon powerful computing clusters, are often capable of solving ILPs 
with tens of thousands of variables and constraints. Since CEs are constructed prior to run-time, we believe that it is 
reasonable to attempt to solve ILPs exactly rather than only approximately, and seek to obtain ILP formulations that we will 
seek to solve exactly to construct non-preemptive multiprocessor CEs for implicit-deadline periodic task systems. However if 
this is not practical for particular problem instances, we devise an approximation algorithm with polynomial running time 
for constructing non-preemptive CEs, and evaluate the performance of this approximation algorithm vis-a-vis the exact one 
both via the theoretical metric of speedup factor, and via simulation experiments on synthetically generated workloads. We 
additionally show that for a particular kind of workload that is quite common in practice — systems of harmonic tasks – 
even better results are obtainable.

Organization. The remainder of this paper is organized as follows. In Section 2, we briefly describe the principles behind 
cyclic executives. In Section 3 we describe the periodic implicit-deadline task model, and introduce the terminology and 
notation that we use in this paper. In Section 4 we formulate the problem of constructing cyclic executives for implicit-
deadline periodic tasks as a linear program; in Sections 5 and 6 respectively, we describe how such linear programming 
formulations may be solved to obtain preemptive and non-preemptive cyclic executives.

2. Cyclic executives

In this section we provide a brief introduction to the cyclic executive approach to hard-real-time scheduling. This is by 
no means comprehensive or complete; for a textbook description, please consult [6, Ch. 5.2–5.4].

Baker & Shaw [3] define a cyclic executive to be “a control structure [...] for explicitly interleaving the execution of several 
periodic processes. [...] The interleaving is done in a deterministic fashion so that execution timing is predictable.” In the 
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cyclic executive approach, a schedule called a major schedule is determined prior to run-time, which describes the sequence 
of actions (i.e., computations) to be performed during some fixed period of time called the major cycle. The actions of a 
major schedule are executed cyclically, going back to the beginning at the start of each major cycle.1 The major schedule 
is further divided into one or more frames (also known as minor schedules or minor cycles). As stated in [7], a common 
way to describe a schedule is to describe a complete major cycle as a sequence of different minor cycles, and to express each minor 
cycle as a sequence of actions. Each frame is allocated a fixed length of time during which the computations assigned to that 
frame must be executed. Timing correctness is monitored at frame boundaries via hardware interrupts generated by a timer 
circuit: if the computations assigned to a frame are discovered to have not completed by the end of the frame then a frame 
overrun error is flagged and control transferred to an error-handling routine.

The chief benefits of the cyclic executive approach to scheduling are its implementation simplicity and efficiency, and 
the timing predictability it offers: if we have a reliable upper bound on the execution duration of each computation then 
an application’s schedulability is determined by construction (i.e., if we are successful in building the CE then we can be 
assured that all deadlines are met).

The chief challenge lies in constructing the schedules; i.e., in defining the frame durations and determining the actions to 
be performed within each frame. The schedule construction problem is rendered particularly challenging by the requirement 
that for implementation efficiency considerations, timing monitoring is performed only at frame boundaries — as stated 
above, a timer is set at the start of a frame to go off at the end of the frame, at which point in time it is verified that 
all actions assigned to that frame have indeed completed execution (if not, corrective action must be taken via a call to 
error-handling routines). CEs are typically used for periodic workloads only (rather than for mixes of periodic and sporadic 
tasks). Hence the schedule-generation approach proposed in [3] requires that at least one frame lie within the interval 
formed by the instants that each action — “job” — become available for execution, and the instant that it has a deadline. 
For efficiency considerations, it is usually required that all tasks have a period that is a multiple of the minor cycle, and a 
deadline that is no smaller than the minor cycle duration. Schedule construction is in general highly intractable for many 
interesting models of periodic processes [3]; however, heuristics have been developed that permit system developers to 
construct such schedules for reasonably complex systems (as Baker & Shaw have observed [3], “if we do not insist on 
optimality, practical cases can be scheduled using heuristics”).

In this paper, we model our periodic workload as a task system of implicit-deadline periodic tasks. Some of our results 
additionally require that the tasks have harmonic periods: for any pair of tasks τi and τ j , it is the case that Ti divides T j
exactly or T j divides Ti exactly. Although this does constitute a significant restriction on the periodic task model, many 
safety-critical systems appear to respect this restriction.

Current practice. Current approaches to the construction of CEs in safety-critical systems are often ad hoc and based on the 
expertise of individual system integrators who have built up years of experience in synthesizing such CEs. This approach 
often requires that additional restrictions (such as harmonic periods) be placed upon the workload. The academic and 
research community appears to have not devoted too much effort in this direction. A few tools have been developed that 
are primarily based on exhaustive search incorporating heuristic rules for optimizing the direction of the search [8,9], 
specializing search heuristics such as simulated annealing [10], and model checking [11]; the performance of these tools 
generally do not scale well with problem size. To our knowledge, no tools for constructing CEs have been developed that 
exploit the recent significant advances in the state of the art of linear programming-based optimization tools.

3. Workload model

Throughout this paper we assume that we are given a task system τ = {τi = (Ci, Ti)}N
i=1 of N implicit-deadline peri-

odic2 tasks that are to be scheduled upon an m-processor identical multiprocessor platform. The worst-case execution time 
(WCET) of τi is Ci , and its period is Ti . Let P denote the least common multiple (lcm) of the periods of all the tasks in τ
(P is often called the hyper-period of τ ), and let F denote the greatest common divisor (gcd) of the periods of all the tasks 
in τ . P is selected as the duration of the major cycle, and F the duration of the minor cycle, of the CEs we will construct 
(Fig. 1).

Some further notation and terminology: Let J = { j1, j2, . . . , jn} denote all the jobs generated by τ that have their arrival 
times and deadlines within the interval [0, P ), and let ai , ci and di denote the arrival time, WCET, and (absolute) deadline 
respectively of job ji . (We will often represent a job ji by an ordered 3-tuple of its parameters: ji

def= (ai, ci, di). We refer 
to the interval [ai, di) as the scheduling window of this job ji ; in any correct schedule, each job ji will receive at least ci
units of execution during its scheduling window.) Note that the number of jobs n may in general take on a value that is 
exponential in the number of tasks N . Since we are seeking to explicitly construct a schedule for the n jobs, we argue that 
it is reasonable to evaluate the efficiency of algorithms for constructing these schedules in terms of the number of jobs n to 
be scheduled rather than in terms of the number of periodic tasks N . (Indeed, the size of the CE that is pre-computed and 

1 Multiple major schedules may be defined for a single system, specifying the desired system behavior for different modes of system operation; switching 
between modes is accomplished by swapping the major schedule used. If a major cycle is of not too large a duration, then switches between modes may 
be restricted to only occur at the end of major cycles.

2 We highlight that these are periodic, not sporadic, tasks: τi generates jobs at time-instants k × Ti , for all k ∈N.



C. Deutschbein et al. / Science of Computer Programming 172 (2019) 102–116 105
N and m Number of tasks and processors
τi = (Ci , Ti) The i’th task has worst-case execution time Ci and period Ti

P lcmN
i=1{Ti} — the hyperperiod. Selected as major cycle duration

F gcdN
i=1{Ti}. Selected as minor cycle (frame) duration

f The amount of execution that a single processor can accommodate in one frame. Upon unit-speed processors, f = F
�k The k’th frame, for k ∈ {1,2, . . . , P/F }
n The total number of jobs in one hyperperiod. n = ∑N

i=1(P/Ti)

ji = (ai , ci ,di) The i’th job, 1 ≤ i ≤ n. Its arrival time, WCET, and absolute deadline
J The collection of these n jobs
xijk LP variable: the fraction of the i’th job assigned to the j’th processor during the k’th frame

Fig. 1. Some of the notation used in this paper.

Fig. 2. The jobs generated by the task system of Example 1.

stored for use during run-time is polynomial in n rather than N; hence, we believe it makes sense to consider algorithms 
that have run-time polynomial in the size of the generated object to be “efficient”.)

Without loss of generality, we assume that the tasks are indexed according to non-decreasing periods: Ti ≤ Ti+1 for all 
i, 1 ≤ i < N . For harmonic task systems τ , the tasks have harmonic periods: Ti divides Ti+1 exactly for all i, 1 ≤ i < N .

Example 1. Consider a system τ comprising three tasks τ1, τ2, and τ3, with periods T1 = 4, T2 = 6, and T3 = 12. P =
lcm(4, 6, 12) = 12; F = gcd(4, 6, 12) = 2. Therefore, minor cycle duration is 2, major cycle duration is 12. For this τ , J
comprises the six jobs j1– j6 depicted in Fig. 2. As shown in the figure, task τ1 generates jobs j1, j2, and j3, task τ2
generates jobs j4 and j5, and task τ3 generates job j6. There are (12/2) = six frames or minor cycles within the major 
cycle — these are labeled in the figure as �1, �2, . . . , �6 with �k spanning the interval [2(k − 1), 2k]. �
4. Representing cyclic executives as linear programs

In this section we represent the problem of constructing a cyclic executive as a linear program. We start out in Section 4.1
with a brief review of some well-known facts concerning linear programs that we will use in later sections of the paper; 
the LP representation of CEs is in Section 4.2.

4.1. Some linear programming background

In an integer linear program (ILP), one is given a set of v variables, some or all of which are restricted to take on integer 
values only, a collection of “constraints” that are expressed as linear inequalities over these v variables, and an “objective 
function,” also expressed as a linear inequality of these variables. The set of all points in v-dimensional space over which all 
the constraints hold is called the feasible region for the integer linear program. The goal is to find the extremal (maximum 
or minimum, as specified) value of the objective function over the feasible region.

A linear program (LP) is like an ILP, without the constraint that some of the variables are restricted to take on integer 
values only. That is, in an LP over a given set of v variables, one is given a collection of constraints that are expressed as 
linear inequalities over these v variables, and an objective function, also expressed as a linear inequality of these variables. 
The region in v-dimensional space over which all the constraints hold is again called the feasible region for the linear 
program, and the goal is to find the extremal value of the objective function over the feasible region. A region is said to be 
convex if, for any two points p1 and p2 in the region and any scalar λ, 0 ≤ λ ≤ 1, the point (λ · p1 + (1 − λ) · p2) is also in 
the region. A vertex of a convex region is a point p in the region such that there are no distinct points p1 and p2 in the 
region, and a scalar λ, 0 < λ < 1, such that [p ≡ λ · p1 + (1 − λ) · p2].

It is known that an LP can be solved in polynomial time by the ellipsoid algorithm [12] or the interior point algo-
rithm [13]. We do not need to understand the details of these algorithms: for our purposes, it suffices to know that LP 
problems can be efficiently solved (in polynomial time).

We now state without proof some basic facts concerning linear programming optimization problems.
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Fact 1. The feasible region for a LP problem is convex, and the objective function reaches its optimal value at a vertex point 
of the feasible region.

An optimal solution to an LP problem that is a vertex point of the feasible region is called a basic solution to the LP 
problem.

Fact 2. A basic solution to an LP can be found in polynomial time.

Fact 3. Consider a linear program on v variables with each variable subject to the constraint that it be ≥ 0 (such constraints 
are called non-negativity constraints). Suppose that in addition to these non-negativity constraints there are c other linear 
constraints. If c < v , then at most c of the variables have non-zero values at each vertex of the feasible region (including at all 
basic solutions).

4.2. An LP representation of CEs

Given a periodic task system comprising N tasks for which an m-processor cyclic executive is to be obtained, we now 
describe the construction of a linear program with 

(
N × m × P

F

)
variables, each of which is subject to a non-negativity 

constraint (i.e., each may only take on a value ≥ 0), and 
(

n + (m + N) × P
F

)
additional linear constraints (here n denotes 

the total number of jobs generated by the task system over one hyper-period, P denotes the least common multiple of the 
period of the tasks, and F denotes the greatest common divisor of the periods of the tasks).

§1. Variables. We will have a variable xijk denote the fraction of job ji that is scheduled upon the j’th processor during 
the k’th frame. The index i takes on each integer value in the range [1, n] (recall that n denotes the total number of jobs 
generated by all the periodic tasks over the hyper-period). For each i,

• The index j takes on each integer value in the range [1, m] — here m denotes the number of processors.
• Note that job ji may only execute within those frames that are contained in the scheduling window — the interval 

[ai, di) — of job ji . The index k, therefore, only takes on values over the range of frame-numbers of those frames 
contained within [ai, di).
With regard to the example task system of Example 1 as depicted in Fig. 2, for instance, job j3 may only execute during 
the 5’th or the 6’th frames (�5 and �6). Hence, assuming a 2-processor platform (m = 2), the variables defined for job 
j3 are x315, x316, x325, and x326.

The total number of xijk variables is equal to [N × m × (P/F )], where N denotes the number of periodic tasks (not the 
number of jobs), m denotes the number of processors, and P/F represents the number of minor cycles.

Example 2. For the task system of Example 1 on two processors, the xijk variables corresponding to jobs of task τ1 are

j1︷ ︸︸ ︷
x111, x121, x112, x122,

j2︷ ︸︸ ︷
x213, x223, x214, x224,

j3︷ ︸︸ ︷
x315, x325, x316, x326

Those corresponding to jobs of task τ2 are

j4︷ ︸︸ ︷
x411, x421, x412, x422, x413, x423,

j5︷ ︸︸ ︷
x514, x524, x515, x525, x516, x526

Corresponding to the sole job of τ3, we have the twelve variables

j6︷ ︸︸ ︷
x611, x621, x612, x622, x613, x623, x614, x624, x615, x625, x616, x626

for a total of 36 variables. �

§2. An objective function. Since LP’s allow us to specify an objective function to optimize (minimize/maximize), let us seek 
to minimize the speed or computing capacity that the processors must possess in order for there to exist a feasible cyclic 
executive. Specifically, let f denote the amount of computing that can be accomplished by a processor executing for the 
duration F of an entire frame; if the processors were to be of unit speed, then f = F . We will define the following objective 
function for our LP:

minimize f (1)
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This is equivalent to determining the minimum-speed processors needed in order to construct a feasible CE. That is, the 
minimum value of f that is obtained upon solving the LP represents the minimum amount of computation that is needed 
to be completed by an individual processor within a duration F ; if the available processors can indeed accommodate this 
amount of computation within a single frame, then the solution is a feasible one.

§3. Constraints. Since the xijk variables represent fractions of jobs, they must all be assigned values that are ≥ 0; hence, 
they are all subject to non-negativity constraints. In addition, the 

(
N ×m × P

F

)
variables defined above are used to construct 

a linear program representation of a CE, via the following constraints:

1. We represent the requirement that each job must receive the required amount of execution by having the constraints

∑
all j,k

xi jk = 1 for each i, 1 ≤ i ≤ n (2)

There are n such constraints, one per job.
2. We represent the requirement that each processor may be assigned no more than f units of execution during each 

minor cycle by having the constraints

∑
all i

xi jk · ci ≤ f for each j, 1 ≤ j ≤ m and k, 1 ≤ k ≤ P/F (3)

There are m × (P/F ) such constraints.
3. We represent the requirement that each job may be assigned no more than f units of execution during each minor 

cycle by having the constraints

∑
all j

xi jk · ci ≤ f for each i, 1 ≤ i ≤ n and k, 1 ≤ k ≤ P/F (4)

There are N × (P/F ) such constraints (note that N denotes the number of periodic tasks, not the number of jobs).

The total number of constraints is thus equal to [n + (m + N) × (P/F )].

Example 3. For the task system of Example 1 on two processors, there will be a total of 36 constraints. Rather than 
enumerate all 36, we illustrate one constraint of each kind (Constraints 2, 3, and 4).

• Constraint 2, instantiated for job j1, would be

x111 + x121 + x112 + x122 = 1

• Constraint 3, instantiated for the second processor and the fourth frame �4, would be of the form 
∑

i xi24, with the 
index i ranging over all those jobs for which the scheduling windows overlap with frame �4. These are jobs j2 of task 
τ1, job j5 of task τ2, and job j6 of task τ3. The constraint is therefore

x224 × C1 + x524 × C2 + x624 × C3 ≤ f

Here, we are using the fact that since job j2 (jobs j5 and j6, respectively) is generated by task τ1 (tasks τ2 and τ3, 
resp.), c2 ← C1 (c4 ← C2 and c6 ← C3, resp.).

• Constraint 4, instantiated for job j4 and the third frame �3, is

x413 × C2 + x423 × C2 ≤ f

Here, we are using the fact that since job j4 is generated by task τ2, c5 ← C2. �

§3. Solving the LP. We saw above how a cyclic executive for N implicit-deadline periodic tasks upon m processors could be 
represented as the solution to a linear program with

(
N × m × P

F

)
variables and

(
n + (m + N) × P

F

)
constraints,

where n denotes the total number of jobs generated by the task system over one hyper-period, P denotes the least common 
multiple of the period of the tasks, and F denotes the greatest common divisor of the periods of the tasks. Observe that
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1. Given an assignment of integer values (i.e., either 0 or 1) to each of the xijk variables that satisfy the constraints of 
the LP, we may construct a non-preemptive cyclic executive in the following manner: for each xijk that is assigned the 
value 1, schedule the execution of job ji on the j’th processor during the k’th frame.

2. Given an assignment of non-negative values to the xijk variables that satisfy the constraints of the LP, we may construct 
a global preemptive cyclic executive in the following manner. For each xijk that is assigned a non-zero value, schedule 
job ji for a duration xijk × ci on the j’th processor during the k’th frame. (Of course, care must be taken to ensure that 
during each frame no job executes concurrently upon two different processors — we will see in Section 5 below how 
this is ensured.)

That is, an integer solution to the ILP yields a non-preemptive cyclic executive while a fractional solution yields a global 
preemptive cyclic executive. We discuss the problem of obtaining such solutions, and thereby obtaining preemptive and 
non-preemptive cyclic executives respectively, in Sections 5 and 6 respectively.

5. Preemptive cyclic executives

In this section we discuss the problem of constructing preemptive cyclic executives for implicit-deadline periodic task 
systems by obtaining solutions to the linear program described above.

Let us suppose that we have solved the linear program, and have thus obtained an assignment of non-negative values to 
the xijk variables that satisfy the constraints of the LP. We now describe the manner in which we construct a preemptive 
cyclic executive for the ko ’th frame �ko ; the entire cyclic executive is obtained by repeating this procedure for each ko , 
1 ≤ ko ≤ (P/F ).

For each job jio observe that

χio

def=
m∑

j=1

xio jko

represents the total amount of execution assigned to job jio during frame �ko in the solution to the LP. By Constraint 4
of the LP, it follows that χio ≤ f for each job jio ; i.e. no job is assigned more than f units of execution over the frame. 
Additionally, it follows from summing Constraint 3 of the LP over all m processors (i.e., for all values of the variable j in 
Constraint 3) that

( n∑
io=1

χio

)
≤ m × f .

We have thus shown that (i) no individual job is scheduled during the frame for more than the computing capacity of a 
single processor during one frame, and (ii) the total amount of execution scheduled over the interval does not exceed the 
cumulative computing capacity of the frame (across all m processors). We may therefore construct a schedule within the 
frame using McNaughton’s wrap-around rule [14] in the following manner:

1. We order the jobs that receive any execution within frame �ko arbitrarily.
2. Then we begin placing jobs on the processors in order, filling the j’th processor entirely before starting the ( j + 1)’th 

processor. Thus, a job jio may be split across processors, assigned to the last t time units of the frame on the j’th 
processor and the first (χio − t) time units of the frame on the ( j + 1)’th processor; since χio ≤ f , these assignments 
will not overlap in time.

It is evident that this can all be accomplished efficiently within run-time polynomial in the representation of the task 
system.

Implementation. In Section 6.2.1 below, we describe experiments that we have conducted comparing ILP-based exact and 
LP-based approximate algorithms for constructing non-preemptive CEs. These experiments required us to solve LPs, similar 
to the kind described here, using the Gurobi Optimization tool [15]; performance of the Gurobi Optimization tool scaled 
very well with the size of the task system in these experiments. (We also point out that even when not asked for integer 
solutions, the Gurobi Optimization tool typically tends to find non-preemptive solutions if they exist; hence very often a 
non-preemptive CE is obtained even when not asked for!)

5.1. A network-flow approach

As we saw in Section 4 above, the Linear Programming framework offers an attractive abstraction for formalizing the 
requirements of cyclic executives for implicit-deadline periodic task systems. Given such an LP formulation of a cyclic ex-
ecutive, we are able to obtain both preemptive or non-preemptive schedules by solving the linear program under different 
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Fig. 3. The network flow graph for the task system of Example 1 (as depicted in Fig. 2). The capacity of each edge (S, ji) ∈ E1 is equal to ji ’s WCET ci . The 
capacity of each edge in E2 is equal to f ; the capacity of each edge in E3 is (m × f ).

constraints (i.e., integer-valued solutions only, versus real-valued solutions); above, we saw how we can obtain a preemptive 
cyclic executive from a real-valued solution.

For obtaining preemptive cyclic executives, there is an alternative (i.e., not LP-based) algorithm that we briefly describe in 
this section. This algorithm is based upon first constructing a network (a directed graph with capacity constraints specified 
upon its edges) from the specifications of a given task system, and establishing equivalence between a preemptive cyclic 
executive for this task system and a flow of a certain size between particular nodes in the graph. Such an equivalence 
immediately yields the polynomial-time cyclic-executive construction algorithm we desire, since algorithms are known for 
determining network flows in polynomial time.3

As before, let us suppose that we are given a task system comprising N implicit-deadline periodic tasks for which we 
seek to construct a cyclic executive upon m unit-speed processors. We now describe below the construction of a weighted 
digraph G . (The graph obtained by applying this construction to the example task system of Fig. 2 is depicted in Fig. 3; the 
reader may wish to refer to Fig. 3 to help understand the construction described here.) Graph G is a “layered” graph: the 
vertex set of G is the union of 4 disjoint sets of vertices V 1, . . . , V 4, and the edge set of G is the union of 3 disjoint sets 
of edges E1, . . . , E3, where Ei is a subset of (V i × V i+1), 1 ≤ i ≤ 3. G is thus a 4-layered graph, in which all edges connect 
vertices in adjacent layers. G is constructed so that the sets of vertices are as follows:

1. V 1 = {S}
2. V 2 has n vertices, one corresponding to each job generated over the hyper-period
3. V 3 has P/F vertices, one corresponding to each frame defined over the hyper-period, and
4. V 4 = {T}

The sets of edges of G are as follows:

1. E1 comprises n edges: there is an edge from S to each of the n vertices in V 2. The capacity of the edge connecting S to 
each vertex u ∈ V 2 is equal to WCET of the job corresponding to the vertex u.

2. E2 comprises (N × (P/F )) edges: there is a single edge of capacity f from each vertex u ∈ V 2 to each vertex v ∈ V 3
that corresponds to a frame contained within the scheduling window of the job corresponding to the vertex u.

3. E3 comprises (P/F ) edges: there is an edge of capacity m × f from each vertex in V 3 to vertex T.

Recall that ci denotes the WCET of job ji ; therefore, 
(∑n

i=1 ci
)

equals the sum of the WCETs of all the jobs of all the 
tasks over one hyper-period. The following lemma establishes the equivalence between a preemptive cyclic executive for the 
task system and a flow of this size between the vertices S and T in the graph constructed above.

Lemma 1. Each flow of size 
(∑n

i=1 ci
)

from vertex S to vertex T in the directed graph G corresponds to a preemptive m-processor cyclic 
executive for the task system.

Proof. We first show that any cyclic executive can be represented as a flow of size n.

3 This approach of reducing a preemptive scheduling problem to a network-flow one is fairly standard in the scheduling literature; see, e.g., [16,17] for 
prior example applications of its use.
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• Assign a flow from vertex S to each vertex u ∈ V 1 of size equal to the WCET of the job corresponding to vertex u. Thus, 
there is a flow of the desired size leaving vertex S.

• Suppose that the job ji is scheduled for a duration x in frame �k in the cyclic executive. Assign a flow of size x from 
the vertex in V 2 corresponding to ji , to the vertex in V 3 corresponding to �k .
Observe that since each job ji is scheduled for its WCET in the cyclic executive, this construction ensures that the flow 
into each vertex in V 2 flows out of that vertex.

• Suppose that the total WCET of jobs scheduled during the frame �k in the cyclic executive equals W ; assign a flow of 
size W from the vertex in V 3 corresponding to frame �k to the vertex T.
Observe that the total amount of execution scheduled upon the m processors during any frame is at most m × f ; hence 
the capacity constraint on the edges in E3 are satisfied.

Next, we show that given a flow of size 
(∑n

i=1 ci
)

in the graph, we can construct an m-processor preemptive cyclic executive 
for the task system. The schedule is constructed using the following scheduling rule:

For each edge (u, v) ∈ V 2 × V 3 that has a flow of size x, schedule the job corresponding to u ∈ V 2 for a duration x in 
the frame corresponding to v ∈ V 3.

We now argue that this rule does indeed yield a correct cyclic executive:

• Since the flow is of the desired size, there must be a flow from vertex S to each vertex in u ∈ V 2 of size equal to the 
WCET of the job corresponding to u. Further, this flow into each vertex of V 2 must exit the vertex via edges in E2. 
Therefore, each of the n jobs does get scheduled for a duration equal to its WCET upon frames within its scheduling 
window by the above scheduling rule.

• It remains to show that the schedule constructed by the scheduling rule is a feasible one: we do so by the following 
argument. Since each edge in E2 is of capacity f , no individual job is scheduled for a duration > f within any single 
frame. Since each edge in E3 has a capacity of m × f , the total amount of assigned execution within any single frame 
does not exceed the available capacity in that frame across all m processors. McNaughton’s wrap-around rule [14]
schedule may therefore be applied for each frame to construct the schedule within the frame. �

Lemma 1 above shows that in order to construct a preemptive cyclic executive, it suffices to determine whether a flow of 
a specified size exists in the graph G . The Ford–Fulkerson network-flow algorithm [18] can determine the largest flow in G
polynomial time. We can therefore apply the Ford–Fulkerson network-flow algorithm to the constructed graph to determine 
the largest flow from vertex S to vertex T in the graph G; if this flow is of size equal to the sum of the WCETs of all the 
jobs, then we apply the scheduling rule described in the proof of Lemma 1 to construct the cyclic executive.

6. Non-preemptive cyclic executives

Synthesizing non-preemptive cyclic executives is highly intractable: it follows directly from results in [19] that synthe-
sizing such CEs is NP-hard in the strong sense even for highly-restricted instances in which all tasks have the same period. 
In this section, we discuss the process of obtaining 0/1 integer solutions to the linear program defined in Section 4.2; as 
discussed there, such a solution can be used to construct non-preemptive cyclic executives for the periodic task system 
represented using the linear program.

Let us start out observing that in order for a non-preemptive cyclic executive to exist, it is necessary that any job fits 
into an individual frame; i.e., that

N
max
i=1

{Ci} ≤ f (5)

Any task system for which this condition does not hold cannot be scheduled non-preemptively.4

Let us now take a closer look at the LP that was constructed in Section 4.2. Consider any 0/1 integer solution to this 
LP. Each xijk variable will take on value either zero or one in such a 0/1 integer solution; hence in the LP, the Constraints 2
render the Constraints 4 redundant. To see why this should be so, consider any job (say, jio ), and any frame (say, �ko ). From 
Constraints 2 and the fact that each xijk variable is assigned a value of zero or one, it follows that in any 0/1 integer solution 
to the linear program we will have

(∑
j

xio jko = 0
)

or
(∑

j

xio jko = 1
)
,

4 The problem of scheduling such systems by permitting a controlled amount of splitting of individual jobs is explored, in a somewhat wider context, 
in [20].
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depending upon whether job jio is scheduled (on any processor) within the frame �ko or not. We thus see that at most 
one of the xio jko ’s can equal 1, from which it follows that Constraint 4 necessarily holds for job jio within the frame �ko . 
We may therefore omit the Constraints 4 in the linear program. Hence for non-preemptive schedules, we have a somewhat 
simpler ILP that needs to be solved, comprising

(
N × m × P

F

)
variables but only

(
n + m × P

F

)
constraints.

For our example task system, this would translate to 36 variables (as before), but just 12 constraints (rather than the 36 
constraints discussed in Example 3).

6.1. An approximation algorithm

The problem of finding a 0/1 solution to a Linear Program is NP-hard in the strong sense; all algorithms known for 
obtaining such solutions have running time that is exponential in the number of variables and constraints. As we had 
mentioned earlier, this intractability of Integer Linear Programming does not necessarily rule out the ILP-based approach to 
constructing cyclic executives that we have described above, since excellent solvers have been implemented that are able to 
solve very large ILPs in reasonable amounts of time.

However, the fact of the matter is that not all ILPs can be solved efficiently. We now describe an approximation algo-
rithm for constructing Cyclic Executives, that does not require us to solve ILPs exactly. The algorithm is approximate in the 
sense that it may fail to construct Cyclic Executives for some input instances for which CEs do exist (and could have been 
constructed using the exponential-time ILP-based method discussed above). In Theorem 1 we quantify the non-optimality 
of our approximation algorithm.

Our algorithm starts out constructing the linear program as described in Section 4.2, but without the Constraints 4 (as 
discussed above, the Constraints 2 render these redundant). However, rather than seeking to solve the NP-hard problem of 
obtaining a 0/1 integer solution to this problem, we instead replace the 0/1 integer constraints with the requirement that 
each xijk variable be a non-negative real number no larger than one (i.e., that 0 ≤ xijk ≤ 1 for all variables xijk), and then 
obtain a basic solution5 to the resulting linear program (without the constraint that variables take on integer values). As 
stated in Fact 2 of Section 4.1, such a basic solution can be found efficiently in polynomial time.

Recall that our LP has 
(

N × m × P
F

)
variables but only 

(
n + m × P

F

)
constraints. By Fact 3 of Section 4.1, at most (

n +m × P
F

)
of the variables will take on non-zero values at the basic solution. Some of these non-zero values will be equal 

to one — each such value determines the frame and processor upon which a job is to be scheduled in the cyclic executive. 
I.e., for each xijk that is assigned a value equal to one in the basic solution, we assign job ji to the j’th processor during frame �k.

It remains to schedule the jobs which were not assigned as above — these are the jobs for which Constraint 2 was 
satisfied in the LP solution by having multiple non-zero terms on the LHS. This is done according to the following procedure; 
the correctness of this procedure is proved in [21].

1. Consider all the variables X
def= xijk that have been assigned non-zero values strictly less than one in the basic solution. 

That is,

X
def= {

xijk such that 0 < xijk < 1 in the basic solution
}

2. Construct a bipartite graph with
(a) A vertex for each job jio such that there is some (one or more) xio jk ∈ X . Let V 1 denote the set of all such vertices 

that are added.
(b) A vertex for each ordered pair [ jo, ko] such that there is some (one or more) xijoko ∈ X . Let V 2 denote the set of all 

such vertices that are added.
(c) For each xio joko ∈ X add an edge in this bipartite graph from the vertex in V 1 corresponding to job jio , to the vertex 

in V 2 corresponding to ordered pair [ jo, ko].
3. It has been shown in [21] that there is a matching in this bipartite graph that includes all the vertices in V 1. Such 

bipartite matchings can be found in polynomial time using network-flow algorithms [22,18] (see [23, Chapter 26.3] for 
a textbook description).

4. Once such a bipartite matching is obtained, each job corresponding to a vertex in V 1 is assigned to the processor and 
frame corresponding to the vertex in V 2 to which it has been matched. In this manner, each processor in each frame is 
guaranteed to be assigned at most one job during this process of assigning the jobs that were not already assigned in 
the basic solution.

5 Recall from Section 4.1 above that a basic solution to an LP is an optimal solution that is a vertex point of the feasible region defined by the constraints 
of the LP.
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Fig. 4. The bipartite graph corresponding to a possible LP solution for the task system of Example 1 (as depicted in Fig. 2).

Example 4. Let us re-visit the example task system depicted in Fig. 2. Suppose that we have constructed and solved a 
Linear Program corresponding to this task system, and that this solution assigned non-integer values to only the following 
variables:

j2︷ ︸︸ ︷
x213 ← 0.5; x224 ← 0.5;

j4︷ ︸︸ ︷
x424 ← 0.7; x412 ← 0.3;

j6︷ ︸︸ ︷
x624 ← 0.8; x612 ← 0.1; x626 ← 0.1

1. We would construct vertices corresponding to jobs j2, j4, and j6 in V 1, and corresponding to the ordered pairs 
[1, 3], [2, 4], [1, 2], and [2, 6] in V 2; the resulting bipartite graph is depicted in Fig. 4.

2. A possible matching in this graph pairs j6 with [2, 6], j4 with [1, 2], and j2 with [1, 3].
3. Based on this matching, we would assign j6 entirely to the second processor during frame �6, j4 entirely to the first 

processor during frame �2, and j2 entirely to the first processor during frame �3.

As can be seen, in each frame any processor gets at most one additional job assigned to it. �
6.2. Evaluating the approximation algorithm

We now compare the effectiveness of the polynomial-time approximation algorithm of Section 6.1 with that of the 
ILP-based exact algorithm (solving which takes exponential time in the worst case). We start out with theoretical evalua-
tion: Corollary 1 quantifies the worst-case performance of the approximation algorithm via the speedup factor metric. We 
have also conducted some simulation experiments on randomly-generated workloads, to get a feel for typical (rather than 
worst-case) effectiveness — these are discussed in Section 6.2.1 below.

Theorem 1. Let fopt denote the minimum amount of computation that must be accommodated on an individual processor within each 
frame in any feasible m-processor CE for a given implicit-deadline periodic task system τ . Let Cmax denote the largest WCET of any task 
in τ : Cmax

def= maxτi∈τ {Ci}. The polynomial-time approximation algorithm of Section 6.1 above will successfully construct a CE for τ
upon m processors, with each processor needing to accommodate no more than ( fopt + Cmax) amount of execution during any frame.

Proof. Since (as we had argued in Section 4) an integer solution to the ILP represents an optimal CE, observe that the 
minimum value of f computed in an integer solution to an ILP would be equal to fopt . And since the ILP is more constrained 
than the Linear Program, the minimum value for f computed in the (not necessary integral) solution to the LP obtained by 
the polynomial-time algorithm of Section 6.1 is ≤ fopt. Let fLP denote this minimum value of f computed as a solution to 
the LP; we thus have that fLP ≤ fopt.

In constructing the CE above, the polynomial-time algorithm of Section 6.1 schedules each job according to one of two 
rules:

1. If variable xio joko is assigned a value one in the solution to the LP, then job jio is scheduled upon the jo ’th processor 
during frame �ko .

2. Any job jio not scheduled as above is scheduled upon the processor-frame pair to which it gets matched in the bipartite 
matching.

Clearly, the jobs assigned according to the first rule would fit upon the processors if each had a computing capacity of 
fLP within each frame. Now, observe that the matching in the bipartite graph assigns at most one job to each processor 
during any given frame; therefore, the additional execution assigned to any processor during any frame is < Cmax. Hence 
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each processor could accommodate all the execution assigned it within each frame provided it had a computing capacity of 
at least fLP + Cmax, which is < ( fopt + Cmax). �

The speedup factor of an algorithm A is defined to be smallest positive real number x such that any task system that is 
successfully scheduled upon a particular platform by an optimal algorithm is successfully scheduled by algorithm A upon a 
platform in which the speed or computing capacity of all processors are scaled up by a factor (1 + x).

Corollary 1. The polynomial-time approximation algorithm of Section 6.1 has a speedup bound no larger than 2.

Proof. By Theorem 1 above, if a CE can be constructed for task system τ by an optimal algorithm upon m speed- fopt

processors, it can be scheduled by the polynomial-time algorithm of Section 6.1 upon m speed-
(

fopt + Cmax

)
processors. 

The corollary follows from the observation that Cmax is necessarily ≤ fopt; hence 
(

fopt + Cmax

)
/ fopt is ≤ 2 fopt/ fopt ≤ 2. �

6.2.1. Experimental evaluation
We saw above (Corollary 1) that the polynomial-time approximation algorithm of Section 6.1 has a speedup factor no 

worse than 2. We have conducted some experiments on randomly-generated synthetic workloads to further compare the 
performance of the approximation algorithm with the exact approach of solving the ILP.

Workload generation. The task system parameters for each experiment were randomly generated using a variant of the 
methods used in prior research such as [24,25,20], in the following manner:

• Task utilizations (Ui ) were generated using the UUniFast algorithm [26].
• Task periods were set to be at one of F × {1, 2, 3, 4} (the frame size F was set equal to 25 ms in these experiments, 

in accordance with prior recent work on cyclic executives such as [24,25,20]). Periods were assigned randomly and 
uniformly over these four values. (Since we are restricting attention in this paper to implicit-deadline systems, job 
deadlines were set equal to their periods.)

• Task WCETs were determined as the product of utilization and period.
• All task systems in which one or more tasks had a WCET greater than minor cycle duration F , were discarded (since 

such systems are guaranteed to have no feasible non-preemptive schedules).
(For some of our experiments, we needed task systems in which the largest WCET of any task (the parameter Cmax of 
Theorem 1) was bounded at one-half of three-quarters the frame size. In generating task systems for these experiments, 
we discarded all task systems in which some task had WCET greater than the bound.)

• All the experiments assumed a four-processor platform (m ← 4).

Experiments conducted, and observations made. We conducted two sets of experiments; in each experiment within each 
set,

1. A task system was generated using the procedure detailed above, with a specified number of tasks, a specified total 
utilization, and for some experiments, a specified bound on Cmax.
Each task system so generated was scheduled in two different ways.

2. First, it was scheduled non-preemptively by generating a linear program as described in Section 4.2, and then solved 
as an ILP using the Gurobi [15] optimization tool (instrumented to time out after two seconds of execution, earlier ex-
periments indicating that for systems of 20 tasks on 4 processors, longer runs never improved upon the value obtained 
within the first two seconds).

3. Second, it was scheduled preemptively by solving the linear program obtained above as an LP (i.e., without any inte-
grality constraints) using Gurobi, and then applying the technique described in Section 6.1 to obtain a non-preemptive 
cyclic executive. The maximum amount of computation assigned to any processor within an individual frame in this 
schedule was determined, and designated as fmax.

4. The speedup factor needed by the polynomial-time approximation algorithm for this particular task system was then 
computed as

max
(

1,
fmax

F

)

(Recall that F denotes the frame size, chosen to equal 25 ms in our experiments.)

We now describe the two sets of experiments separately.

§1: Variation of speedup factor with system utilization. As explained above, the speedup bound of 2 identified in Corollary 1
above is a worst-case one. In this set of experiments, we set out to determine how the speedup factor of a randomly-
generated system tends to depend upon the cumulative utilization of the task system. We therefore generated 400 task 
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Fig. 5. Investigating how speedup factor changes with overall system utilization. The mean observed speedup factor over 400 task systems at each utilization 
is depicted, as is the range within one standard deviation from the mean.

Fig. 6. Investigating how observed speedup factor depends upon Cmax, the largest WCET of any task. The mean observed speedup factor over 100 task 
systems is plotted, for Cmax bounded at 1

2 F , 3
4 F , and F , where F denotes the frame size.

systems, each comprising 20 tasks, to have cumulative system utilization equal to U , for each value of U between 0 and 
4 in steps of 0.05. The observed speedup factor needed by the approximation algorithm to schedule each task system was 
determined as described above, and the average and standard deviations computed. These values, plotted in Fig. 5, show 
a clear increasing trend: as overall utilization increases, so does the speedup factor needed to construct a non-preemptive 
schedule using the approximation algorithm.

§2: Variation of speedup factor with Cmax. Theorem 1 reveals that the speedup factor depends upon the value of Cmax, the 
largest WCET of any individual task. To investigate this relationship, we generated 100 task systems with overall utilization 
U for each value of U between 2 and 4 in steps of 0.05, in which the value of Cmax was bounded from above at half the 
frame size, three quarters the frame size, and the full frame size. The observed speedup factor needed by the approximation 
algorithm to schedule each task system was determined as described above, and the average over the 100 individual task 
systems at each data point computed. These values, plotted in Fig. 6, show a clear increasing trend within each system 
utilization: the larger the bound on Cmax, the greater the observed speedup factor.

6.3. Special case: harmonic task systems

Let us now consider systems in which the tasks have harmonic periods: for any pair of tasks τi and τ j , it is the case 
that Ti divides T j exactly or T j divides Ti exactly. Many highly safety-critical systems are explicitly designed to respect this 
restriction; additionally, many systems that are not harmonic are often representable as the union of a few — two or three 
— harmonic sub-systems.

For any job ji , let us define Fi to be the set of frames that lie within ji ’s scheduling window. For the task system of 
Example 1 (as depicted in Fig. 2), e.g., we have

F1 = {�1,�2},F2 = {�3,�4},F3 = {�5,�6},F4 = {�1,�2,�3},
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F5 = {�4,�5,�6}, and F6 = {�1,�2,�3,�4,�5,�6}.

Lemma 2. For any two jobs ji and j j in harmonic task systems, it is the case that
(
Fi ⊆ F j

)
or

(
F j ⊆ Fi

)
or

(
Fi

⋂
F j is empty

) �
A polynomial-time approximation scheme (PTAS) was derived in [27] for the problem of scheduling on restricted identical 

machines with nested processing set restrictions; this PTAS can be directly applied to our problem of constructing non-
preemptive cyclic executives for implicit-deadline periodic task systems with harmonic periods. This allows us to conclude 
that for the special case of harmonic task systems, polynomial-time approximation algorithms may be devised for construct-
ing cyclic schedules that are accurate to any desired degree of accuracy.

7. Conclusions

Cyclic executives (CEs) are widely used in safety-critical systems industries, particularly in those application domains 
that are subject to statutory certification requirements. In our experience, current approaches to the construction of CEs are 
either ad hoc and based on the expertise and experience of individual system integrators, or make use of tools that are 
based on model checking or heuristic search.

Recent significant advances in the state of the art in the development of linear programming tools, as epitomized in the 
Gurobi optimizer [15], have motivated us to consider the use of linear programming for constructing CEs. We have shown 
that CEs for workloads that may be modeled as collections of implicit-deadline periodic tasks are easily and conveniently 
represented as linear programs (LPs). These LPs are solved very efficiently in polynomial time by LP tools like Gurobi; such 
solutions directly lead to preemptive CEs. If a non-preemptive CE is desired then one must solve an integer LP (ILP), which 
is a somewhat less tractable problem than solving LPs. However, our experiments indicate that Gurobi is able to solve 
most ILP problems representing non-preemptive CEs for collections of implicit-deadline periodic tasks quite effectively in a 
reasonable amount of time. We have also developed an approximation algorithm for constructing non-preemptive CEs that 
runs in polynomial time, and performs quite favorably in comparison to the exact algorithm in terms of both a worst-case 
quantitative metric (speedup factor) and in experiments on randomly-generated synthetic workloads.
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