

XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

Special Session: CAD for Hardware Security -
Automation is Key to Adoption of Solutions

Sohrab Aftabjahani

Dataplatform Engineering and
Architecture

Intel Corporation

Hillsboro, USA
sohrab.aftabjahani@intel.com

Ryan Kastner
Department of Computer Science

and Engineering
UC San Diego

San Diego, USA
kastner@ucsd.edu

Mark Tehranipoor
Department of Electrical and

Computer Engineering
University of Florida

Gainesville USA
tehranipoor@ece.ufl.edu

Farimah Farahmandi
Department of Electrical and

Computer Engineering
University of Florida

Gainesville USA
farimah@ece.ufl.edu

Jason Oberg

Tortuga Logic
San Jose, USA

jason@tortugalogic.com

Anders Nordstrom
Tortuga Logic
San Jose, USA

andersn@tortugalogic.com

Nicole Fern
Tortuga Logic
San Jose, USA

nicole@tortugalogic.com

Alric Althoff
Tortuga Logic
San Jose, USA

alric@tortugalogic.com

Abstract— Although hardware security has received

significant attention in the past decade or so, security design and

validation engineers and researchers in industry, academia, and

government have not still been equipped with a mature security-

aware toolset to automatically and effectively analyze designs for

various types of security vulnerabilities at different to detect and

fix the security issues or build security in designs efficiently and

easily. Despite such a demand, currently, there is not an ecosystem

of security-aware Electronic Design Automation (EDA) or

Computer-Aided Design (CAD) tools whereas the commercial

design for security and validation tools are still in their infancy.

However, there exist many research works that try to come up

with security analysis engines and provide solutions to address

different classes of security issues such as data leakage, access

control violation, side-channel leakage, hardware Trojans and

malicious changes, and vulnerabilities to physical attacks, fault-

injection attacks, reverse engineering attacks, and chip

counterfeiting or overproduction attacks. This paper presents the

foundation established by several academic and industry

researchers who have been supporting the realization of an

ecosystem of security-aware CAD tools with their focus on

hardware security coverage and fault-injection assessment for

SoC designs, and security assurance standardization for electronic

design integration.

Keywords—CAD for Security, Hardware Security Coverage,

Fault-Injection Attacks, Security Assurance, Electronic Design

Integration.

I. INTRODUCTION

In the last decade, many hardware security vulnerabilities
have been identified by security researchers from academia and
industry [1,2,4]. As fixing the hardware security issues are
usually expensive and even in some cases not possible, many
design and manufacturing companies, nowadays, invest a lot on
hiring and retaining hardware security experts to rely on them
for security assurance to avoid such vulnerabilities. Considering
the lack of enough experts to meet these demands, the job market
of hardware security is still hot and many investments have been
made by the government and industry to establish academic
programs to create the workforce required to meet this need. We
see the increasing number of companies that have been actively
working on building their hardware security teams to

incorporate security into their Product Development Lifecycle
(PLC) [3], i.e. Security Development Lifecycle (SDL) [3],
which typically includes planning, design, development,
validation, manufacturing, testing, and support steps. To
minimize residual security risks before product shipment, this is
an attempt to address their product security requirements using
(a) systematic approaches by security architects, product
security experts (blue teams) to defend and (b) ad-hoc
approaches by security researchers (red teams) to attack their
own products.

While the above trend is promising for strengthening the
hardware security posture of products around us in the market,
SDL processes still lack the ideally required scalable,
systematic, comprehensive security analysis engines as well as
security modeling standards for creating and managing portable
security-related design collaterals. Such collaterals generally
include security claims of designs, security integration
guidelines, and ideally threat models (security objectives,
adversary profiles, assets, attack surfaces, possible attacks
scenarios exploiting vulnerabilities, and the mitigations of
possible vulnerabilities, etc.). A new generation of security-
aware EDA tools incorporating novel scalable approaches and
methods are necessary to provide the level of security needed to
be built into products as well as the required level of security
assurance. The tools should take advantage of the speed and
accuracy possible by automation and modern computation
power while having the minimum impact on time-to-market,
cost, and efficiency of products.

In the early years of the last decade, the semiconductor industry
was not even ready for CAD for security as many design houses
considered spending on design for security and security
assurance like overhead that the end consumers were not really
willing to pay for, and hence not much investment was made by
Electronic Design Automation (EDA) companies in CAD for
security. In 2015, for the first time, some like-minded security
experts from industry and academia (some of them are among
the authors of this paper) decided to plan how to close this gap
by creating a movement to realize an ecosystem of security-
aware CAD tools for Design for Security and Security
Validation and Assurance. This required finding ways to fund

This work was supported by NSF Award #1718586 and SRC Tasks
2770.001 and 2993.001.

research and development to create various components
(plugins) of this general tool as each security analysis plugin is
usually specialized to address only a few aspects of design for
security and security assurance. Hence, we tried to bring CAD
for Security to the prioritized set of national and commercial
research investments [4-6]. Many CAD for security-related
research projects were later funded by government and private
companies. Concurrently, we also tried to bring Security and
CAD for Security to the attention of the HW security community
and EDA community from academia, industry, and government
by creating panels and tutorial sessions in DAC, IVSW [7],
MTV [8], HOST, VTS and GLSVLSI (the titles of the panels
and tutorials are given below). Many of the authors of this paper
were among the panel organizers, panelists, and tutorial
instructors, invited and keynote speakers.

We also utilized Trust-Hub [9] lead by Tehranipoor, sponsored
by National Science Foundation (NSF), as the venue to bring
CAD for Security solutions [10], first built around Taxonomy of
Physical Attacks [11] to create plugins capable of vulnerability
analysis for each type of attack. The solutions from academia
and industry cataloged on Trust-Hub were also intended to
promote collaboration and information sharing among
researchers and attract government and industry (especially
semiconductor and EDA companies) to invest in them.
Currently, a catalog of more than 100 solutions [8] from our
many partners from academia and industry to help us bring
solutions to various aspects of design for security and security
verification to realize building blocks of our planned “General
Security Design, Analysis, and Validation Framework”.

We believe that we have succeeded because, after several
years, now, we are eyewitnesses of realization of our vision as
several major and small EDA companies have been getting
involved in creating an ecosystem of security-aware tools,
numerous academic security researchers (UoF, UCSD, UT-
Austin, UT-Dallas, GaTech, …) have been joining us or have
started parallel efforts like CAD for Assurance [12], and
semiconductor industry (Intel, AMD, IBM, TI, NXP, Analog
Devices, …) EDA industry (Synopsys, Siemens EDA,
Business, Cadence, ANSYS, Tortuga Logic, …) and
government (DARPA, AFRL, Navy, NSF, …) are willing to
support us in this mission by funding research and development
projects directly or indirectly (e.g. through Semiconductor
Research Corporation) to create more specialized security
analysis engines and/or to commercialize some of the solutions.

With this background, the rest of the paper, sections II, III,
and IV focus on the invited work of a few contributors to make
our audience more familiar with their work in the area of CAD
for security. Section II gives an overview of hardware security
coverage. Section III discusses fault-injection assessment for
SoC design. Section IV describes the security assurance
standardization for electronic design integration work done
under the Accellera IP Security Assurance workgroup. Section
V concludes the paper with a summary.

II. HARDWARE SECURITY COVERAGE

Unlike functional verification that checks if the specified
requirements can happen, security verification takes
requirements and ensures that they cannot happen. In other
words, functional verification is largely focused on verifying the

known whereas security verification targets the unknown. Thus,
functional verification and security verification are
fundamentally different.

Functional verification focuses on matching the hardware to
a known and precise specification. Functional verification
involves generating a set of cover properties that match the
functional requirements, developing directed tests that activate
those cover properties, evaluating the coverage, and if
everything passes, signing-off on the functional correctness.
Once all specified cover properties are sufficiently activated,
there is assurance that the hardware is functionally correct, and
the functional verification sign-off is complete. Functional
verification is a significant undertaking that consumes over 70%
of the hardware design process [13]. As such, there exists a rich
set of mature commercial tools that rely on techniques like
equivalence checking, assertion-based verification, property
checking, and theorem proving.

The security verification process involves developing a
threat model, analyzing the design under verification, attempting
to point out potential vulnerabilities, and articulating those flaws
to the design team. It is almost always possible to find additional
vulnerabilities given more time and resources. Yet, the security
sign-off also has strict time-to-market constraints. Thus, the
security verification engineer struggles with the question “When
is the hardware secure enough?” -- a challenging endeavor
especially considering the general lack of hardware security
verification tools.

Unfortunately, the hardware security verification process is
not well defined. Threat models are wide ranging and often
challenging to precisely specify. New vulnerabilities pop up that
require disabling performance features or costly redesign of the
hardware [14,15]. With the growing understanding that
hardware vulnerabilities are readily exploitable and that
hardware plays a foundational role in overall system security,
there is an increasing amount of time devoted to hardware
security verification. Yet, hardware security verification still
relies heavily on designer intuition and experience. Powerful
hardware security verification tools exist, but work remains on
how to effectively use these tools to achieve the desired security
coverage. Defining metrics for security coverage is crucial to
using hardware security verification tools to achieve security
sign-off.

Coverage metrics are key to verification [16]; without them,
it is impossible to state anything about the completeness of the
verification process. Functional coverage metrics are well-
understood and include code coverage, circuit coverage, FSM
coverage, assertion coverage, mutation coverage, and vacuity
coverage [17]. Unfortunately, defining security coverage
metrics is not as straightforward -- looking for unknowns is a
never-ending process and the concept of being done does not
exist. Yet, it is crucial to articulate what should and has been
considered in the security verification process. We desperately
need security coverage metrics to provide concise methods for
enabling a security sign-off.

To address this, we introduce the CWE-IFT security
coverage metrics. CWE-IFT uses information flow tracking
(IFT) property templates based on common weakness
enumerations (CWEs) to define the threat model and integrate

into a property driven hardware security verification flow [18].
CWE-IFT provides a quantitative way to measure hardware
security coverage while using existing functional verification
tools (including formal solvers, simulation, and emulation) to
verify the security of the hardware.

A. Security Coverage Trends

An important trend in security coverage is the development
of known and exploitable vulnerabilities. Common Weakness
Enumerations (CWEs) [19] play a key role in security
verification. The CWE taxonomy started in 2006 and quickly
evolved into the de facto catalogue of common software
weaknesses. Hardware CWEs were added in 2020 and there are
over 100 listed hardware CWEs [20]. While the CWE database
does not directly inform the security engineer that they have
sufficiently “verified security” or achieved high coverage, it
does provide an enumeration of relevant weaknesses for security
engineers to focus on and refine their security requirements into
what is most important for their hardware. This will continue to
be an important driver for research and security tool
development moving forward.

Another important trend of security coverage is information
flow tracking (IFT) tools, which provide the capability to
symbolically track information rather than values. IFT can
verify hyperproperties [21] related to confidentiality, integrity,
and timing-based flows. In doing so, security weaknesses can be
more efficiently detected without the enormous effort of value-
based assertion or directed test creation as is required when only
considering trace properties. IFT has a long history of research
[22] and is used at the core of Tortuga Logic’s Radix software
products.

A final important trend of security coverage is to leverage,
as much as possible, the existing hardware design and test
infrastructure. Modern hardware design and verification uses a
rich set of tools from formal verification, simulation, hardware
emulation, and FPGA prototyping. Due to strict time-to-market
requirements and security’s often perceived orthogonal goal for
that requirement, it's critically important that security
verification, and security coverage, be enabled across that same
design life cycle. The big question is, how does one enable
hardware security coverage in a manner that uses a conventional
functional verification environment?

B. CWE-IFT

IFT tools provide a unique approach to capture previously
unknown vulnerabilities. Pairing IFT and CWEs provides a
methodology that can specify security properties, formally
define the threat model, and provide coverage metrics that assess
the verification process. CWE-IFT allows the designer to create
security properties that adequately capture the CWE, executes
them using commercially available verification tools and
ultimately provides confidence that all relevant common
weaknesses were covered and the threat model has been
properly assessed.

To better understand the CWE-IFT methodology, consider
for example CWE-1243: Sensitive Non-Volatile Information
Not Protected During Debug and the example design shown
below:

Fig. 1 Example design for CWE-IFT methodology.

 Here the weakness is specifying that any information related
to an asset stored in ROM should not leak out of the debug
interface. From the requirement, one can easily identify three
critical components:

1. Asset: ROM

2. Security Boundary: Debug

3. Security Objective: Confidentiality

From here, it is easy to create a simple information flow rule
that captures the security requirement and CWE:

ROM.mem[FUSE_END:FUSE_START] when
(tcpu.csr.debug_mode) =/=> debug.$all_outputs

This security property can then be passed to a IFT tool, e.g.,
Tortuga Logic’s Radix, to then execute this in a conventional
simulation or emulation environment.

CWE-IFT defines a systematic approach to formalize
security requirements to CWEs using security properties and
perform verification using hardware IFT all in a conventional
functional verification environment. This process is outlined in
the Radix Coverage for Hardware Common Weakness
Enumeration (CWE) Guide [23]. Here we have outlined a five-
step process for creating a verifiable security property that
covers the relevant CWEs:

1. Identify CWE(s) relevant to the threat model.

2. State plain-language security requirement identified in the
CWE(s).

3. List the assets (in the form of data or design signals),
objectives (confidentiality, integrity, availability), and
security boundaries of the design as they correspond to Step
2.

4. Use the Radix security rule template for the corresponding
CWE in this document. Add design signals from Step 3 to
create security rules that can be validated in Radix
alongside standard verification environments from
Cadence, Siemens EDA, and Synopsys. Perform sign-off
that each CWE has been successfully checked.

Here is one such example using the requirement specified
above:

1. Identify CWE relevant for the threat model: CWE 1243:
Sensitive Non-Volatile Information Not Protected During
Debug

2. State plain-language security requirement: “ROM (eFuse)
should not be readable by debug.”

3. Identify asset, objective (confidentiality, integrity,
availability), and security boundary

Asset: “ROM (eFuse)

Security Objective: “must not be readable” is
Confidentiality

Boundary: Debug

4. Use security rule template for CWE-1243:

{{Security-sensitive Fuse Values}} when (debug
mode enabled) =/=> {{User-accessible signals}}

5. Add corresponding signals in design to rule template

rom.mem[FUSED_END:FUSED_START]
when(tcpu.csr.debug_mode)=/=>
 debug.$all_outputs

Doing so across all relevant CWEs provides a powerful
mechanism to effectively cover one's security requirements and
enable a more comprehensive security verification program.

CWE-IFT leverages information flow tracking verification
tools to cover common weakness enumerations to integrate into
a property driven hardware security design flow. We described
an example of the CWE-IFT methodology, that provides a
quantitative way to measure hardware security coverage while
using existing functional verification tools (including formal
solvers, simulation, and emulation) to verify the security of the
hardware. CWE-IFT is just a start in the important research of
hardware security coverage.

III. PRE-SILICON FAULT-INJECTION ATTACK

ASSESMENT

A. Introduction

System-on-chips (SoCs) are prevalent in modern computing
devices deployed to military and space applications, mobile
applications, financial systems, transportations, even household
appliances. SoCs are subject to an array of attacks, namely
information leakage, side-channel leakage, fault injection,
physical attacks, rowhammer, and more. Among them, fault-
injection attacks, though immensely powerful, have
unfortunately received the least attention from the community.

Fault-injection attacks are based on intentionally injecting
faults into a system to cause confidentiality and/or integrity
violations of security assets of the design or denial of service.
Fault-injection attacks are capable of tampering with vulnerable
locations in a device and enable attackers to access the secret
assets of the design. Various attacks have been successfully
demonstrated on encryption and digest algorithms such as AES,
DES, RSA, and SHA [24-29]. More attacks can be applied to
many other security-critical applications including security
controllers, artificial neural network accelerators,
homeomorphic algorithms, and post-quantum algorithms.

The fault-injection vulnerabilities may be the result of poor
design choices or automatically generated code by electronic
design automation (EDA) tools (e.g., synthesis tools) when they
try to optimize the design overheads without consideration of
security as one of the decision factors. For example, some state
encodings in controller designs make the design more
susceptible to fault-injection attacks [30]. At the same time,

synthesis tools may create don’t-care states that are connected to
the protected states (that are responsible for controlling security-
critical operations) of the designs. It has been shown that these
don’t-care states can be accessed by changing the clock
frequency and creating clock glitching. As a result, the protected
states can be accessed in the next clock cycle and the security
mechanism of the design will be bypassed.

Many different countermeasures such as tamper-proof
packaging, error correcting codes, and triple modular redundant
structures have been proposed so far to help with protecting
against fault-injection attacks [31-32]. However, they would be
expensive with the significant design effort and large area or
performance overhead, making their application limited in
practice. Moreover, the current EDA tools are not capable of
effectively assessing the vulnerability of hardware designs
against fault-injection attacks. As the current evaluations are
limited and are done manually, it is difficult to ensure their
effectiveness. Therefore, it is very important to be able to
evaluate the susceptibility of designs to fault-injection attacks at
pre-silicon while there are still opportunities to address the
possible vulnerabilities efficiently.

To successfully evaluate the susceptibility of the hardware
designs against fault-injection attacks, we need to perform the
following steps: (i) classification of fault-injection methods; (ii)
building comprehensive fault models to measure the success rate
of different fault-injection techniques; (iii) identifying security-
critical assets of the designs that are required to be protected
against fault-injection attacks; (iv) creating fault lists based on
the identified fault model and performing fault simulation to
assess the resiliency of the design toward a specific fault-
injection technique that aims to bypass the confidentiality,
integrity, and availability properties of a design. Finally, a set of
countermeasures with a cost-performance-security trade-off in
consideration should be implemented to mitigate the identified
vulnerabilities of a design against fault attacks.

B. Fault-Injection Attack Techniques

Several fault-injection techniques have been developed to alter
the correct functionality and security features of an integrated
circuit. Fault-injection techniques can be classified into two
major categories: non-invasive and invasive attacks. Focusing
on non-invasive fault-injection attacks, faults can be injected in
vulnerable locations of the design by tampering with the
working conditions of the design like performing clock or
voltage glitching [33-34].
Clock Glitching: In this technique, faults can be injected by
violating the setup- or hold-time requirements of design flip-
flops. This may cause shortening the length of a clock signal
temporarily and ultimately capturing the wrong value in
memory elements of the design or skipping an instruction.
Voltage Glitching: These faults can be injected by tampering
power supplies of the device. For example, running the chip
with lower supply voltage may result in leaving high-threshold
transistors in the design open, and ultimately flipping bits in the
design, latching wrong values, or skipping some instructions.
Electromagnetic Radiation: Electromagnetic (EM) fault
occurs when any IC surface faces a sudden variation of a
magnetic field. The variation of magnetic field creates an

electromotive force in the IC surface which in turn gives rise to
a parasitic current in the wire loops in the IC. The amplitude of
the parasitic current is proportional to the variation rate of the
magnetic field. Electromagnetic fault injections mainly modify
the behavior of power and ground networks which has a direct
effect on the operation of D-flip-flops (DFF’s). When the fault
occurs, the inputs of DFFs are disrupted and as a result, the
DFFs may sample wrong values during their operation [35].

Faults can be injected in vulnerable locations of the design
based on the following analysis:

• Timing analysis of the designs and measuring hold-time

and setup-time of the flip-flops - shorter paths are more

likely to have a hold-time violation and longer and critical

paths are susceptible to setup-time violation. Hence, the

effect of EM and power faults (in case of slow down) on

the critical paths are measured for security-critical

applications. Such faults can result in a processor skipping

an instruction or storing incorrect data in the memory.

• Switching activity analysis to detect transitions that can be

skipped using changing the clock frequency, reducing the

voltage, or slowing down the design using EM-faults.

• Distance measurement analysis from power supplies to

critical gates (especially in the control flow of the design)

to evaluate the effect of depleted power resources to create

bit flips.

• Fan-out and fan-in analysis as well as topology analysis of

signals in security properties to measure the effect of power

spikes to skip instructions or rounds of computations. Fan-

out cone analysis provides valuable information about the

length of interconnects. Longer interconnects can be

attractive locations for EM and power faults since they

propagate the potential slow down effects of these faults

and can cause setup and hold time violations and bit flips.

Fig. 2 A high-level overview of the SoFI framework.

Non-invasive fault-injections techniques are usually
inexpensive compared to invasive approaches and do not need
detailed knowledge about the design. For invasive attacks, such
as FIB and probing [36], they require higher cost, de-packaging,
and more knowledge of the design. The chip may be fully or

partially damaged under the attack. These faults are local with
better resolution.

C. SoFI: A Security Property-Based Approach to Fault-

Injection Attack Assessment

SoFI is a security property-driven vulnerability assessment
framework for SoCs against fault-injection attacks recently
proposed in [37]. A security property defines operations that
must be present or absent thereof in a design to maintain the
integrity, confidentiality, and availability of the design. The
critical locations to a fault-injection attack are identified by
checking whether any security properties can be violated by the
fault. The more critical locations identified, the more vulnerable
the design is to fault-injection attacks. Also, by identifying
critical locations, local countermeasures can be developed
making protection overhead reduced significantly.

The overall flow of the SoFI framework is shown in Fig. 2.
The SoFI framework takes the gate-level design, stimulus
vectors, and security properties as the inputs. First, to map
specific fault-injection techniques (e.g., clock/voltage glitch or
laser) in the assessment, a fault list will be generated based on
the fault models and their characterization. The characterized
fault models enable us to simulate the fault injection in digital
circuits for a specific fault injection technique, such as an
external EM field or voltage glitching. Therefore, the fault
simulation is performed as the next step to identify critical
faults that can violate security properties without redundant
fault locations.

To preserve security properties, SOFI identifies the most
critical design locations that injecting faults in them will result
in violating the given security properties. The identification of
these locations depends on the fault model, fault-injection
technique, and completeness of provided security properties.
After detecting the most vulnerable locations in the design,
local countermeasures can be applied for an effective and low-
cost protection mechanism against fault-injection attacks. SOFI
has been applied on AES, RSA, and SHA implementations, and
the results show that the threat from fault-injection attacks can
be significantly reduced by only protecting less than 0.6% of
the design.

D. COUNTERMEASURES

After detecting vulnerable components of the design to
fault-injection attacks, a set of countermeasures, like localized
redundancy, should be applied to protect the design toward
various fault-injection techniques/attacks. Some
countermeasures focus on using sensors to detect the act of fault
injection. However, the most common fault detection and
mitigation method is based on creating redundancy, which
tends to require more resources than the minimal necessary
ones to complete the task. When a fault strikes, redundancy is
utilized to mask the faults, thus maintaining the correct
functionality of the system [24]. Typically, there are three types
of redundancy in terms of available resources: hardware,
information, and time. Hardware redundancy indicates adding
extra hardware into the device to either detect or correct the
impacts of the faults injected. One example is an M-of-N
system, which consists of N modules and requires at least M to

function correctly. The system fails when fewer than M
modules are working properly. Dynamic redundancy is another
type of hardware redundancy, where unused resources are
activated when faults are injected in the currently active
resource. However, hardware redundancy incurs high
overheads (at least 2X), which may be too expensive to be used
in practice. The most common information redundancy
countermeasure is an error detection code (EDC). In EDC,
check bits are incorporated into the original bits so that errors
can be detected by comparing the predicted and the received
check bits, which is widely used in memory units. Time
redundancy can also be utilized to detect faults by re-running
the same process on the same hardware. Below, we describe
countermeasure for a number of fault-injection attacks.
Clock/voltage glitching: When applying clock/voltage
glitching attack, faults will propagate uniformly across the
device, which can give an advantage to the attacker in terms of
accessibility to rarely activated nodes and registers in the
circuits. Countermeasures include internal oscillators,
asynchronous logic, different threshold voltages and applying
redundancies. One could use a temporal redundancy approach.
Since the clock and voltage glitching are causing global faults,
it is not feasible to protect the whole circuits with spatial
redundancy. Temporal redundancy can be applied non-tiing
critical parts of the circuits because it is not guaranteed that the
global faults occur exactly the same due to their randomness
when the same function is executed.
Local heating: Local heating influences the whole design, it
requires minimal technical knowledge, and the equipment is
readily available. One drawback of this technique is that it tends
to cause invasive faults in sensitive devices. Another downside
is that the circuit may be destroyed through excessive heating.
Causing multiple bits to flip using local heating may be highly
possible when there is an excessive heating.
EM pulses: EMFI (EM fault injection) causes transient voltage
drops which may cause a significant amount of delay variation
in the circuits. Sensors that can measure the change in circuit
timing can be used to detect EMFI. For instance, time-to-delay
converter (TDC) sensors and glitch detectors respond to delay
variation in integrated circuits, so they can be used to detect
EMFI. However, EMFI may impact the circuit locally, hence
only one detector in a large SoC may not be sufficient to
effectively detect injected faults in the entire circuit [38]. So,
several detectors may be needed for the uninterrupted operation
of an IC. We acknowledge that power supply noises,
temperature, and process variation can also cause delay
variation in the circuits [39]. As a result, it would be
challenging to differentiate between EM-based fault injection
and the above-mentioned process and environmental variations.
This may require detectors to be calibrated precisely so as to
efficiently detect EMFI.
Light radiation: Different from the light beam, light radiation
exploits the light such as UV light to have an influence on the
whole circuit instead of some certain parts. Thus,
countermeasures against light radiation could be similar to that
of EM pulses.

Light beam: Although light beams can be focused on a specific
area of the circuit, it could be considered a weak version of laser
beam attack, because the wavelength of the visible light used
by light beam attacks covers more than ten times of the
transistors’ feature size. Different from light radiation, which is
only applied to attack memories in common cases, a light beam
can also flip the bits in FFs. One could apply redundancy or
embed sensors into the sensitive functions in the design.
Laser beam: A laser beam attack is an improvement of a light
beam attack as it can focus on one or part of a cell.
Countermeasures include protective metal layers, metal shield,
tamper sensors, redundancies, and sensors. Note, most of the
recent approaches use backside attacks, hence one can use
tamper-detection sensors and redundancies. Some prior
research has demonstrated an approach to inject a one-bit fault
in the AES module with a laser beam. However, such
approaches are based on one critical assumption: different
faults injected at a certain round of encryption will surely have
different final outputs. Hence developing protection against
such attacks is necessary.

Focused Ion Beam: Focused Ion Beam (FIB) is probably
the most accurate and powerful fault-injection technique. FIB is
able to inject multiple-bit faults at any location of interest in a
circuit. When multiple-bit faults are injected, the conventional
redundancy-based mitigations are no longer effective since the
voter (typically TMR’s voter) can also become corrupt.
Countermeasures for this attack include spatial/temporal
randomization where one would distribute the function
execution and resources randomly in the circuit, thus, even with
guaranteed multiple-bit faults, much more effort and analysis
will be needed for attackers to break the circuits.

IV. AN OVERVIEW OF SECURITY ASSURANCE FOR ELECTRONIC

DESIGN INTEGRATION (SA-EDI) AND ITS APPLICATIONS

The importance of security in the electronic systems many
of us rely on has become obvious to semiconductor design and
manufacturing companies but most hardware security assurance
practices in industry are still performed manually using
proprietary methods, which can be expensive, time consuming,
and error prone due to the ever-increasing complexity of
systems. The Accellera IP Security Assurance (IPSA) Working
Group [40], consisting of security and EDA experts is proposing
a general and portable IP security specification standard
describing the IP security concerns (threat model) and guidance
to EDA vendors on how to produce security assurance collateral.
This will enable tools for automation of security assurance of
systems/subsystems/IPs with the main focus on security
concerns with regards to IP integration. As IPSA will be
releasing the Security Assurance for Electrical Design
Integration (SA-EDI) standard in 2021, this paper introduces the
collateral, methodology and a case study of application of the
standard.

A. Introduction

Today’s Systems on Chip (SoC) are very complex and
consists of multiple reused IP blocks and software running on
one or many embedded processors. This enables fast
development and flexibility in applications by loading different
software. Although Hardware Security Design Lifecyle (HSDL)

[40] methodologies for design for security and security
assurance have been around for a decade, they are not widely
used. If security is considered, it is often manual e.g., review of
RTL files or penetration testing after fabrication. These methods
are incomplete and may lead to security weaknesses in the final
product. To be effective HW security needs to be addressed
during the design and verification phase. However, a lack of
standards hampers this effort.

Using third party IP saves lots of design and verification
effort and is done in a majority of SoCs. However, the security
implications of integrating IP can be huge and they are generally
not understood. The IP creator doesn’t know the application
where the IP will be used and the IP integrator don’t know what
security risks are associated with the IP. Are there features or
limitations in the IP that will compromise security in the
application if not mitigated?

The Security Assurance for Electrical Design Integration
(SA-EDI) work addresses this issue by defining a procedure and
a format to capture security concerns in an executable
specification to be delivered along with the IP. The IP provider
documents security concerns in the IP that the user should be
aware of. The IP integrator now knows the security risks in the
IP and can mitigate them if applicable in his system. The
standard also allows for the IP integrator to validate the integrity
of the data delivered and to verify mitigations in the SoC.

For additional background, see the IP Security Assurance
Standard whitepaper [41]. This section is organized as follows.
Subsection IV.A gives an overview of SA-EDI followed by a
case study in Subsection IV.B. Subsection IV.C concludes the
paper with a short summary.

B. SA-EDI Overview

 The objectives of the standard are, to improve
trustworthiness of IP and IP providers by including a verifiable
executable specification with the IP, to assist IP integrators in
understanding the security concerns in the IP and to reduce
security risk, and to accelerate tool development to enable
security assurance. The methodology includes references to a
knowledgebase that lists potential IP security concerns. One
such database is MITRE’s Common Weakness Enumeration
(CWE) Error! Reference source not found.. It provides a
common reference for identifying and describing weaknesses
between IP provider and IP integrator.

As shown in Fig. 3, the standard defines four JavaScript Object
Notation (JSON) [42] data objects that are included in the IP
Bundle delivered to the IP integrator. The IP Bundle or
collection of files also contains the IP design, verification code
and documentation. The four objects are:

• Asset Definition

• Database

• Element

• Attack Point Security Objective (APSO)
The Asset Definition lists ports or storage locations in the
design that may violate security objectives if they are modified
or are readable outside the IP. The Database object specify
which Security Weakness Knowledge Base (SWKB) is used by

the IP provider. The Element object identifies which inputs can
affect the asset and to which outputs the asset can leak
information. It also contains references to related weaknesses
e.g., CWE entries. The APSO object is created from the
Element and includes security objective for the asset i.e.,
Confidentiality, Integrity or Availability. The Attack Points are
the relevant inputs or outputs identified in the Element object
with an optional condition specifying when the security
objective is violated.

Fig. 3. Integrating the proposed security assurance flow with design and
verification flow.

C. Case Study: SA-EDI Methodology Steps

There are several steps in the process of creating an SA-EDI
compliant IP Bundle and additional steps for the IP Integrator
to utilize the information. We will use a typical HW Root of
Trust (HRoT) module (Fig. 5) as a case study to illustrate the
steps and the data created.
The first step is identifying assets i.e., design elements that may
have security implications for the IP integrator. The full
hierarchical name of each asset is captured in Asset Definition
objects.
The One Time Programmable (OTP) memory contains
encryption keys, programmed at device manufacturing.
Unauthorized access to these may have security implications
for the product that integrate the IP. To make the HRoT IP more
flexible and easier to debug, the OTP is readable through the
debug interface and the hrot_iface interface. The IP provider
captures this information in an Asset Definition object (Fig. 4)
to make the IP integrator aware of the risks.

The second step is for the IP provider to decide which database
to identify weaknesses related to the asset to use. In this case
MITRE’s CWE is used. A Database object (Fig. 6) is created
that will be referenced in the Asset Definition object.

{
 "Name" : "hrot.otp.mem.mem_out",
 "Description" : "Fuse values contains keys for AES",
 "Family" : ["Storage"],
 "Type" : ["Data", "Critical", “Secret”],
 "Database_ID" : ["CWE VIEW: Hardware Design"]

}

Fig. 4. Asset Definition Object.

Fig. 5. Hardware Root of Trust Module Example.

The third step is to generate two Element Objects for the asset.
Each Element respectively identifies which IP ports are in the
fan-in and fan-out cone of the asset and may thus affect
Integrity and Confidentiality of the asset. The Description,
Family and Type fields in the Asset Definition are used to
determine relevant CWE entries for the asset. Here, two
applicable CWE entries are:

• CWE-1274: Insufficient Protections on the Volatile
Memory Containing Boot Code Error! Reference

source not found.

• CWE-1243: Exposure of Security-Sensitive Fuse
Values During Debug Error! Reference source not

found.
The Element Object (Fig.) is tool generated as manually
determining fan-in and fan-out for an asset in a complex design
is not feasible.

Fig. 7. Element Objects.

The security objective for the fuse values is confidentiality. The
fourth step is to manually create APSO objects for the

corresponding Element object. Here, there are two different
attack surfaces, the debug interface and the hrot_iface interface.
They have different conditions under which Confidentiality of
the asset will be violated so two APSO objects for the two cases
(Fig. 8) are created.

Fig. 8. Attack Point Security Objective Objects.

All SA-EDI data objects for the IP are now created. The last
step is to include them in the IP Bundle delivered to the IP
integrator. Before delivering the IP Bundle, the IP creator needs
to verify that the attack points and conditions specified are
correct and that no additional attack points exist.
The tool that generated the Element objects may also create
information flow security rules or path verification assertions
to be used in simulation or formal verification, respectively. For
example, using the fields in the OTP_CONF_DBG APSO
JSON object, it will generate a rule such as the following in an
executable form.

“Information from hrot.otp.mem.mem_out will not flow to the
dbg_dout port when dbg_mode is true and the address is in range
[‘h3600:’h3500]”

This rule is expected to fail since the APSO object
communicates the attack points and conditions for how the
security objective is violated. It is also easy to verify that
information flow does not occur when the condition is false or
that information doesn’t flow to other outputs. Information flow
rules to verify there is no information flow to any other output
of the IP are easily tool generated.
The IP Integrator receives the IP Bundle and uses an EDA tool
to generate Element objects from the IP RTL source and the
Asset Definition object for each asset. The generated Element
objects are compared to the Element objects delivered in the IP

{
 "Name" : "OTP_CONF_HROT",
 "Asset Name" : " hrot.otp.mem.mem_out ",
 "Security Objective" : "Confidentiality",
 "Description" : " Fuse values contains keys for AES that can be
read from hrot_iface",
 "Condition" : "(hrot_rwn==1) && (addr > ‘h3500 &&
addr<’h3600)",
 "Security Weakness Reference" : ["CWE-1274"],
 "Attack Points" : ["hrot_dout,", “hrot_rdy”]
}
{
 "Name" : "OTP_CONF_DBG",
 "Asset Name" : " hrot.otp.mem.mem_out ",
 "Security Objective" : "Confidentiality",
 "Description" : " Fuse values contains keys for AES that can be
read from debug interface",
 "Condition" : "(dbg_mode==1) && (addr > ‘h3500 &&
addr<’h3600)",
 "Security Weakness Reference" : ["CWE-1243"],
 "Attack Points" : ["dbg_dout"]
}

{
 "ID" : "CWE VIEW: Hardware Design",
 "Description" : "A community developed list of hardware
weakness types.
https://cwe.mitre.org/data/definitions/1194.html",

“URI" : “LocalDrive:/data/SWKB/cwe/cwe43.csv",
"Version" : “4.3"

}

Fig. 6. Database Object.

{
 "Asset Name" : "hrot.otp.mem.mem_out",

"Direction" : "Output",
"Security Weakness Reference" : ["CWE-1274","CWE-1243"],
"Ports" : ["dbg_dout", “hrot_dout”, “hrot_rdy”],
 "Parameters" : ["wd_top.COUNT_SIZE"]
}

{
 "Asset Name" : "hrot.otp.mem.mem_out",

"Direction" : "Input",
"Security Weakness Reference" : ["CWE-1274","CWE-1243"],
"Ports" : ["dbg_mode", “dbg_addr”, “dbg_din”, “hrot_addr”,

“hrot_rwn”, “hrot_din”]
}

Fig. 9. Example of a tool-generated rule.

Bundle and they are expected to match. If not, the integrity of
the IP Bundle is violated and should be resolved before
proceeding.
Next, the IP Integrator reviews the APSO objects and decides
which ones are applicable to the product being designed. The
debug port of the SoC will not be connected in the end product
so the security concern communicated in the
OTP_CONF_DBG object does not need to be mitigated. An
SoC-level APSO object communicating the attack points to the
SoC user may be created. The attack points identified by the
OTP_CONF_HROT object needs to be mitigated. The IP
integrator implements access control in the module connected
to the hrot_iface interface to prevent any read of the AES keys
from outside the HRoT module. To verify that the mitigation is
effective, the integrator generates a similar information flow
rule from the APSO object as was used by the IP provider. The
only difference is that the destination is an SoC port or signal.
When verifying the rule in SoC level simulations, it is expected
to not fail since the leakage was mitigated. This ensures that no
security weaknesses are introduced when the IP is integrated in
the SoC.

D. Section Summary

We have seen how the required SA-EDI data objects are
created by the IP Provider and how both the IP Provider and IP
Integrator can use them for verifying security requirements of
the IP and system. It lowers the risk for the IP Integrator since
the security concerns of the IP are known and can be mitigated.
Using SA-EDI is easy since data objects and verification code
can be automatically generated by EDA tools.

V. SUMMARY

We gave an overview of our CAD for Security journey and
how we planned to bring out our vision to reality to have proper
EDA support for Design for Security and Security Assurance.
Although, the industry have progressed from the stage that
security assurance was considered overhead to the current stage
that it is an essential part of the product development, the CAD
for Security supporting systematic, scalable, and comprehensive
Design for Security and Security Assurance has just started
evolving for a while. We expect that with collaborative research
and development among academic and industry experts: (a) it
will get to a level that we have standard and portable security
models to be understood by development team and EDA tools,
(b) EDA vendors will provide multiple tools and many options
for Design for Security and Security Assurance (similar to their
portfolio of tools Design for Test and Validation), (c) design
houses will have established flows to use the EDA tools with
acceptable overhead to hit time-to-markets, and (d) product
design and development teams will be security aware and use
the security tools and standards to model the security of their
designs approbatory, built security into their products, and
perform the security assurance required easily and efficiently.

We introduced a couple of solutions to contribute to the
maturity of CAD for Security tools. Solutions like CWE-IFT
leverage information flow tracking verification tools to cover
CWE’s to integrate into a property driven hardware security
design flow. Standards such as SA-EDI can be used to create
portable threat models to be handled by EDA tools for providing

better security assurance for IP’s and their integration within a
subsystem or a system. Solutions like SOFI based on security-
properties for assessment and mitigation of advanced attacks
become available to product development teams.

There is still a long way to get to our destination and we
would invite other likeminded experts who believe on creating
systemic CAD for Security solutions to address the needs of the
future, to join us.

REFERENCES

[1] S. Bhunia and M. Tehranipoor, Hardware Security - A Hands on Learning

Approach, S. Bhunia and M. Tehranipoor, Eds. Morgan Kaufmann, 2019

[2] M. Tehranipoor and C. Wang, Introduction to Hardware Security and
Trust. Springer Publishing Company, Incorporated, 2011.

[3] H. Khattri, N. K. V. Mangipudi and S. Mandujano, "HSDL: A Security
Development Lifecycle for hardware technologies," in 2012 IEEE
International Symposium on Hardware-Oriented Security and Trust, San
Francisco, CA, USA, 2012, pp. 116-121, doi:
10.1109/HST.2012.6224330 .

[4] R. Cammarota, S. Aftabjahani, et al., Security and Privacy Chapter,
Semiconductor Research Opportunities – An Industry Vision and Guide,
Semiconductor Research Corporation and Semiconductor Research
Association, 2017, pp. 45-51. [Online]. Available: Semiconductor
Research Opportunities – An Industry Vision and Guide

[5] M. Tehranipoor, R. Cammarota, S. Aftabjahani, et al., “Chapter 3:
Microlectronics Secuity and Trust - Grand Challenges”, TAME: Trusted
and Assured MicroElectronics Working Group Report, Dec., 2019.
[Online]. https://dforte.ece.ufl.edu/wp-
content/uploads/sites/65/2020/08/TAME-Report-FINAL.pdf

[6] D. Gardner, P. Ramrakhani, S Jeloka, P. Song, C. Vishik, S. Aftabjahani,
R. Cammarota, M. Chen, A. Xhafa, J. Oakley, and D. Yeh, Research
Needs: Trustworthy and Secure Semiconductors and Systems (T3S),
Semiconductor Research Corporation, 2019. [Online]. Available:
https://www.src.org/program/grc/t3s/research-needs/2019/2019-t3s.pdf .

[7] M. Abadir and S. Aftabjahani, "An Overview of the International
Microprocessor/ SoC Test, Security and Validation (MTV)Workshop," in
2019 IEEE International Test Conference (ITC), Washington, DC, USA,
2019, pp. 1-2, doi: 10.1109/ITC44170.2019.9000128..

[8] M. Abadir and S. Aftabjahani, "An Overview of the International
Verification and Security Workshop (IVSW)," in 2019 IEEE
International Test Conference (ITC), Washington, DC, USA, 2019, pp. 1-
2, doi: 10.1109/ITC44170.2019.9000165.

[9] Welcome to Trust-Hub, Trust-Hub. Accessed on: Apr. 08, 2021. [Online].
Available URL: https://www.trust-hub.org

[10] “CAD/IP for Security,” Trust-Hub. Accessed on: Apr. 08, 2021. [Online].
Available URL: https://www.trust-hub.org/#/cad-ip-sec/cad-solutions

[11] “The Vulnerability Database,” Trust-Hub. Accessed on: Apr. 08, 2021.
[Online]. Available URL: https://www.trust-hub.org/#/vulnerability-
db/physical-vulnerabilities

[12] CAD for Assurance, https://cadforassurance.org

[13] H. Foster, Applied assertion-based verification: An industry perspective,
Now Publishers Inc., 2009.

[14] M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, Werner, A. Fogh,
J. Horn, S. Mangard, P. Kocher, D. Genkin, et al, “Meltdown: Reading
kernel memory from user space,” in 27th USENIX Security Symposium
(USENIX Security 18), pp. 973–990, 2018.

[15] P. Kocher, J. Horn, A. Fogh, D. Genkin, D. Gruss, W. Hass, M Hamburg,
M. Lipp, S. Mangard, T Prescher, et al, “Spectre attacks: Exploiting
speculative execution,” in 2019 IEEE Symposium on Security and Privacy
(SP), pp. 1–19, 2019.

[16] S. Tasiran and K. Keutzer, "Coverage metrics for functional validation of
hardware designs," in IEEE Design & Test of Computers, vol. 18, no. 4,
pp. 36-45, July-Aug. 2001, doi: 10.1109/54.936247.

[17] H. Chockler, O. Kupferman, and M. Vardi, “Coverage metrics for formal
verification,” in Advanced Research Working Conference on Correct
Hardware Design and Verification Methods, pp.111–125, 2003.

[18] W. Hu, A. Althoff, A. Ardeshiricham and R. Kastner, "Towards Property
Driven Hardware Security," in 2016 17th International Workshop on
Microprocessor and SOC Test and Verification (MTV), Austin, TX, USA,
2016, pp. 51-56, doi: 10.1109/MTV.2016.12.

[19] Common Weakness Enumeration (CWE). Accessed on: Apr. 08, 2021.
[Online]. Available URL: https://cwe.mitre.org/

[20] “CWE View: Hardware Design,” Common Weakness Enumeration
(CWE). Accessed on: Apr. 08, 2021. [Online]. Available URL:
https://cwe.mitre.org/data/definitions/1194.html

[21] M. Clarkson, F. Schneider, “Hyperproperties,” in Journal of Computer
Security, vol. 18, no. 6, pp. 1157–1210, 2010.

[22] W. Hu, A. Ardeshiricham, and R. Kastner, “Hardware Information Flow
Tracking,” in ACM Computing Surveys, 2021.

[23] Radix Coverage for Hardware Common Weakness Enumeration (CWE)
Guide. Accessed on: Apr. 08, 2021. [Online]. Available URL:
https://tortugalogic.com/wp-
content/uploads/2020/03/RadixCWEGuide_20210126.pdf

[24] A. Barenghi, L. Breveglieri, I. Koren, and D. Naccache, “Fault injection
attacks on cryptographic devices: Theory, practice, and
countermeasures,” in Proceedings of the IEEE, vol. 100, no. 11, pp. 3056–
3076, 2012.

[25] M. Karpovsky and A. Taubin, “New class of nonlinear systematic error
detecting codes,” in IEEE Transactions on Information Theory, vol. 50,
no. 8, pp. 1818–1819, 2004.

[26] M. Hutter, J. Schmidt, and T. Plos, “Contact-based fault injections and
power analysis on rfid tags,” in 2009 European Conference on Circuit
Theory and Design, pp. 409–412, 2009.

[27] N. Moro, A. Dehbaoui, K. Heydemann, B. Robisson, and E. Encrenaz,
“Electromagnetic fault injection: Towards a fault model on a 32-bit
microcontroller,” in 2013 Workshop on Fault Diagnosis and Tolerance in
Cryptography, pp. 77–88, 2013.

[28] D. F. Kune, J. Backes, S. S. Clark, D. Kramer, M. Reynolds, K. Fu, Y.
Kim, and W. Xu, “Ghost talk: Mitigating emi signal injection attacks
against analog sensors,” in 2013 IEEE Symposium on Security and
Privacy, pp. 145–159, 2013.

[29] S.Tajik and F. Ganji, “Artificial Neural Networks and Fault Injection
Attacks”, arXiv:2008.07072, 2021.

[30] A. Nahiyan, F. Farahmandi, P. Mishra, D. Forte, and M. Tehranipoor,
“Security-aware fsm design flow for identifying and mitigating
vulnerabilities to fault attacks,” in IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, vol. 38, no. 6, pp. 1003–
1016, 2019.

[31] R. E. Lyons and W. Vanderkulk, “The use of triple-modular redundancy
to improve computer reliability,” in IBM Journal of Research and
Development, vol. 6, no. 2, pp. 200–209, 1962.

[32] G. Bertoni, L. Breveglieri, I. Koren, and P. Maistri, “An efficient
hardware-based fault diagnosis scheme for aes: performances and cost,”
in 19th IEEE International Symposium on Defect and Fault Tolerance in
VLSI Systems, 2004. DFT 2004. Proceedings., pp. 130–138, 2004.

[33] B. Ning and Q. Liu, “Modeling and efficiency analysis of clock glitch
fault injection attack,” in 2018 Asian Hardware Oriented Security and
Trust Symposium (AsianHOST), pp. 13–18, 2018.

[34] N. Timmers and C. Mune, “Escalating privileges in linux using
voltagefault injection,” in 2017 Workshop on Fault Diagnosis and
Tolerance in Cryptography (FDTC), pp. 1–8, 2017.

[35] M. Dumont, M.Lisart and P. Maurine., “Electromagnetic Fault Injection
: how faults occur ?,” in 2019 Workshop on Fault Diagnosis and
Tolerance in Cryptography (FDTC), Atlanta, GA, USA, 19 September
2019.

[36] H. Wang, Q. Shi, A. Nahiyan, D. Forte, and M. M. Tehranipoor, “A
physical design flow against front-side probing attacks by internal
shielding,” in IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, pp. 1–1, 2019.

[37] H. Wang, H. Li, F. Rahman, M. Tehranipoor, and F. Farahmandi, “SoFI:
Security Property-Driven Vulnerability Assessments of ICs Against
Fault-Injection Attacks,”in IEEE Transactions on Computer-Aided
Design (TCAD), 2021.

[38] Loic Zussa, Amine Dehbaoui, Karim Tobich, Jean-Max Dutertre,
Philippe Maurine Ludovic Guillaume-Sage, Jessy Clediere, Assia Tria,
“Efficiency of a Glitch Detector against Electromagnetic Fault Injection,”
in 2014 Design, Automation & Test in Europe Conference & Exhibition
(DATE), Dresden, Germany, 21 April 2014.

[39] Dennis R.E. Gnad, Fabian Oboril, Saman Kiamehr, Mehdi B. Tahoori.,
“Analysis of Transient Voltage Fluctuations in FPGAs,” in 2016
International Conference on Field-Programmable Technology (FPT),
Xi'an, 18 May 2017.

[40] Accellera IP Security Assurance Group, Accellera System Initiativetm.
Accessed on: Apr. 08, 2021. [Online]. Available:
https://www.accellera.org/activities/working-groups/ip-security-
assurance

[41] Brent Sherman, Mike Borza, Jonathan Valamehr, Sohrab Aftabjahani, et
al., “IP Security Assurance Standard”, September 4th , 2019. Accessed
on: Apr. 08, 2021. [Online]. Available: https://www.design-
reuse.com/articles/46877/ip-security-assurance-standard.html

[42] Introducign JSON (JavaScript Object Notation). Accessed on: Apr. 08,
2021. [Online]. Available: http://www.json.org/

