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Abstract— Although hardware security has received 

significant attention in the past decade or so, security design and 

validation engineers and researchers in industry, academia, and 

government have not still been equipped with a mature security-

aware toolset to automatically and effectively analyze designs for 

various types of security vulnerabilities at different  to detect and 

fix the security issues or  build security in designs efficiently and 

easily. Despite such a demand, currently, there is not an ecosystem 

of security-aware Electronic Design Automation (EDA) or 

Computer-Aided Design (CAD) tools whereas the commercial 

design for security and validation tools are still in their infancy. 

However, there exist many research works that try to come up 

with security analysis engines and provide solutions to address 

different classes of security issues such as data leakage, access 

control violation, side-channel leakage, hardware Trojans and 

malicious changes, and vulnerabilities to physical attacks, fault-

injection attacks, reverse engineering attacks, and chip 

counterfeiting or overproduction attacks. This paper presents the 

foundation established by several academic and industry 

researchers who have been supporting the realization of an 

ecosystem of security-aware CAD tools with their focus on 

hardware security coverage and fault-injection assessment for 

SoC designs, and security assurance standardization for electronic 

design integration. 

Keywords—CAD for Security, Hardware Security Coverage, 

Fault-Injection Attacks, Security Assurance, Electronic Design 

Integration. 

I. INTRODUCTION  

In the last decade, many hardware security vulnerabilities 
have been identified by security researchers from academia and 
industry [1,2,4]. As fixing the hardware security issues are 
usually expensive and even in some cases not possible, many 
design and manufacturing companies, nowadays, invest a lot on 
hiring and retaining hardware security experts to rely on them 
for security assurance to avoid such vulnerabilities. Considering 
the lack of enough experts to meet these demands, the job market 
of hardware security is still hot and many investments have been 
made by the government and industry to establish academic 
programs to create the workforce required to meet this need. We 
see the increasing number of companies that have been actively 
working on building their hardware security teams to 

incorporate security into their Product Development Lifecycle 
(PLC) [3], i.e. Security Development Lifecycle (SDL) [3], 
which typically includes planning, design, development, 
validation, manufacturing, testing, and support steps. To 
minimize residual security risks before product shipment, this is 
an attempt to address their product security requirements using 
(a) systematic approaches by security architects, product 
security experts (blue teams) to defend and (b) ad-hoc 
approaches by security researchers (red teams) to attack their 
own products.  

While the above trend is promising for strengthening the 
hardware security posture of products around us in the market, 
SDL processes still lack the ideally required scalable, 
systematic, comprehensive security analysis engines as well as 
security modeling standards for creating and managing portable 
security-related design collaterals. Such collaterals generally 
include security claims of designs, security integration 
guidelines, and ideally threat models (security objectives, 
adversary profiles, assets, attack surfaces, possible attacks 
scenarios exploiting vulnerabilities, and the mitigations of 
possible vulnerabilities, etc.). A new generation of security-
aware EDA tools incorporating novel scalable approaches and 
methods are necessary to provide the level of security needed to 
be built into products as well as the required level of security 
assurance. The tools should take advantage of the speed and 
accuracy possible by automation and modern computation 
power while having the minimum impact on time-to-market, 
cost, and efficiency of products. 

In the early years of the last decade, the semiconductor industry 
was not even ready for CAD for security as many design houses 
considered spending on design for security and security 
assurance like overhead that the end consumers were not really 
willing to pay for, and hence not much investment was made by 
Electronic Design Automation (EDA) companies in CAD for 
security. In 2015, for the first time, some like-minded security 
experts from industry and academia (some of them are among 
the authors of this paper) decided to plan how to close this gap 
by creating a movement to realize an ecosystem of security-
aware CAD tools for Design for Security and Security 
Validation and Assurance. This required finding ways to fund 
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research and development to create various components 
(plugins) of this general tool as each security analysis plugin is 
usually specialized to address only a few aspects of design for 
security and security assurance. Hence, we tried to bring CAD 
for Security to the prioritized set of national and commercial 
research investments [4-6]. Many CAD for security-related 
research projects were later funded by government and private 
companies. Concurrently, we also tried to bring Security and 
CAD for Security to the attention of the HW security community 
and EDA community from academia, industry, and government 
by creating panels and tutorial sessions in DAC, IVSW [7], 
MTV [8], HOST, VTS and GLSVLSI (the titles of the panels 
and tutorials are given below). Many of the authors of this paper 
were among the panel organizers, panelists, and tutorial 
instructors, invited and keynote speakers.  

We also utilized Trust-Hub [9] lead by Tehranipoor, sponsored 
by National Science Foundation (NSF), as the venue to bring 
CAD for Security solutions [10], first built around Taxonomy of 
Physical Attacks [11] to create plugins capable of vulnerability 
analysis for each type of attack. The solutions from academia 
and industry cataloged on Trust-Hub were also intended to 
promote collaboration and information sharing among 
researchers and attract government and industry (especially 
semiconductor and EDA companies) to invest in them. 
Currently, a catalog of more than 100 solutions [8] from our 
many partners from academia and industry to help us bring 
solutions to various aspects of design for security and security 
verification to realize building blocks of our planned “General 
Security Design, Analysis, and Validation Framework”. 

We believe that we have succeeded  because, after several 
years, now, we are eyewitnesses of realization of our vision as 
several major and small EDA companies have been getting 
involved in creating an ecosystem of security-aware tools, 
numerous academic security researchers (UoF, UCSD, UT-
Austin, UT-Dallas, GaTech, …) have been joining us or have 
started parallel efforts like CAD for Assurance [12], and 
semiconductor industry (Intel, AMD, IBM, TI, NXP, Analog 
Devices, … ) EDA industry (Synopsys, Siemens EDA,  
Business, Cadence, ANSYS, Tortuga Logic, … ) and 
government (DARPA, AFRL, Navy, NSF, …) are willing to 
support us in this mission by funding research and development 
projects directly or indirectly (e.g. through Semiconductor 
Research Corporation) to create more specialized security 
analysis engines and/or to commercialize some of the solutions.   

With this background, the rest of the paper, sections II, III, 
and IV focus on the invited work of a few contributors to make 
our audience more familiar with their work in the area of CAD 
for security. Section II gives an overview of hardware security 
coverage. Section III discusses fault-injection assessment for 
SoC design. Section IV describes the security assurance 
standardization for electronic design integration work done 
under the Accellera IP Security Assurance workgroup. Section 
V concludes the paper with a summary. 

II. HARDWARE SECURITY COVERAGE 

Unlike functional verification that checks if the specified 
requirements can happen, security verification takes 
requirements and ensures that they cannot happen. In other 
words, functional verification is largely focused on verifying the 

known whereas security verification targets the unknown. Thus, 
functional verification and security verification are 
fundamentally different.  

Functional verification focuses on matching the hardware to 
a known and precise specification. Functional verification 
involves generating a set of cover properties that match the 
functional requirements, developing directed tests that activate 
those cover properties, evaluating the coverage, and if 
everything passes, signing-off on the functional correctness. 
Once all specified cover properties are sufficiently activated, 
there is assurance that the hardware is functionally correct, and 
the functional verification sign-off is complete. Functional 
verification is a significant undertaking that consumes over 70% 
of the hardware design process [13]. As such, there exists a rich 
set of mature commercial tools that rely on techniques like 
equivalence checking, assertion-based verification, property 
checking, and theorem proving.  

The security verification process involves developing a 
threat model, analyzing the design under verification, attempting 
to point out potential vulnerabilities, and articulating those flaws 
to the design team. It is almost always possible to find additional 
vulnerabilities given more time and resources. Yet, the security 
sign-off also has strict time-to-market constraints. Thus, the 
security verification engineer struggles with the question “When 
is the hardware secure enough?” -- a challenging endeavor 
especially considering the general lack of hardware security 
verification tools.  

Unfortunately, the hardware security verification process is 
not well defined. Threat models are wide ranging and often 
challenging to precisely specify. New vulnerabilities pop up that 
require disabling performance features or costly redesign of the 
hardware [14,15]. With the growing understanding that 
hardware vulnerabilities are readily exploitable and that 
hardware plays a foundational role in overall system security, 
there is an increasing amount of time devoted to hardware 
security verification. Yet, hardware security verification still 
relies heavily on designer intuition and experience. Powerful 
hardware security verification tools exist, but work remains on 
how to effectively use these tools to achieve the desired security 
coverage. Defining metrics for security coverage is crucial to 
using hardware security verification tools to achieve security 
sign-off. 

Coverage metrics are key to verification [16]; without them, 
it is impossible to state anything about the completeness of the 
verification process. Functional coverage metrics are well-
understood and include code coverage, circuit coverage, FSM 
coverage, assertion coverage, mutation coverage, and vacuity 
coverage [17]. Unfortunately, defining security coverage 
metrics is not as straightforward -- looking for unknowns is a 
never-ending process and the concept of being done does not 
exist. Yet, it is crucial to articulate what should and has been 
considered in the security verification process. We desperately 
need security coverage metrics to provide concise methods for 
enabling a security sign-off.  

To address this, we introduce the CWE-IFT security 
coverage metrics. CWE-IFT uses information flow tracking 
(IFT) property templates based on common weakness 
enumerations (CWEs) to define the threat model and integrate 



 

 

into a property driven hardware security verification flow [18]. 
CWE-IFT provides a quantitative way to measure hardware 
security coverage while using existing functional verification 
tools (including formal solvers, simulation, and emulation) to 
verify the security of the hardware.   

A. Security Coverage Trends  

An important trend in security coverage is the development 
of known and exploitable vulnerabilities. Common Weakness 
Enumerations (CWEs) [19] play a key role in security 
verification. The CWE taxonomy started in 2006 and quickly 
evolved into the de facto catalogue of common software 
weaknesses. Hardware CWEs were added in 2020 and there are 
over 100 listed hardware CWEs [20]. While the CWE database 
does not directly inform the security engineer that they have 
sufficiently “verified security” or achieved high coverage, it 
does provide an enumeration of relevant weaknesses for security 
engineers to focus on and refine their security requirements into 
what is most important for their hardware. This will continue to 
be an important driver for research and security tool 
development moving forward. 

Another important trend of security coverage is information 
flow tracking (IFT) tools, which provide the capability to 
symbolically track information rather than values. IFT can 
verify hyperproperties [21] related to confidentiality, integrity, 
and timing-based flows. In doing so, security weaknesses can be 
more efficiently detected without the enormous effort of value-
based assertion or directed test creation as is required when only 
considering trace properties. IFT has a long history of research 
[22] and is used at the core of Tortuga Logic’s Radix software 
products.  

A final important trend of security coverage is to leverage, 
as much as possible, the existing hardware design and test 
infrastructure. Modern hardware design and verification uses a 
rich set of tools from formal verification, simulation, hardware 
emulation, and FPGA prototyping. Due to strict time-to-market 
requirements and security’s often perceived orthogonal goal for 
that requirement, it's critically important that security 
verification, and security coverage, be enabled across that same 
design life cycle. The big question is, how does one enable 
hardware security coverage in a manner that uses a conventional 
functional verification environment? 

B. CWE-IFT 

IFT tools provide a unique approach to capture previously 
unknown vulnerabilities. Pairing IFT and CWEs provides a 
methodology that can specify security properties, formally 
define the threat model, and provide coverage metrics that assess 
the verification process. CWE-IFT allows the designer to create 
security properties that adequately capture the CWE, executes 
them using commercially available verification tools and 
ultimately provides confidence that all relevant common 
weaknesses were covered and the threat model has been 
properly assessed.  

To better understand the CWE-IFT methodology, consider 
for example CWE-1243: Sensitive Non-Volatile Information 
Not Protected During Debug and the example design shown 
below: 

 

Fig. 1 Example design for CWE-IFT methodology. 

 Here the weakness is specifying that any information related 
to an asset stored in ROM should not leak out of the debug 
interface. From the requirement, one can easily identify three 
critical components: 

1. Asset: ROM 

2. Security Boundary: Debug 

3. Security Objective: Confidentiality 

From here, it is easy to create a simple information flow rule 
that captures the security requirement and CWE: 

ROM.mem[FUSE_END:FUSE_START] when 
(tcpu.csr.debug_mode) =/=> debug.$all_outputs 

This security property can then be passed to a IFT tool, e.g., 
Tortuga Logic’s Radix, to then execute this in a conventional 
simulation or emulation environment. 

CWE-IFT defines a systematic approach to formalize 
security requirements to CWEs using security properties and 
perform verification using hardware IFT all in a conventional 
functional verification environment. This process is outlined in 
the Radix Coverage for Hardware Common Weakness 
Enumeration (CWE) Guide [23]. Here we have outlined a five-
step process for creating a verifiable security property that 
covers the relevant CWEs: 

1. Identify CWE(s) relevant to the threat model. 

2. State plain-language security requirement identified in the 
CWE(s). 

3. List the assets (in the form of data or design signals), 
objectives (confidentiality, integrity, availability), and 
security boundaries of the design as they correspond to Step 
2. 

4. Use the Radix security rule template for the corresponding 
CWE in this document. Add design signals from Step 3 to 
create security rules that can be validated in Radix 
alongside standard verification environments from 
Cadence, Siemens EDA, and Synopsys. Perform sign-off 
that each CWE has been successfully checked. 

Here is one such example using the requirement specified 
above: 

1. Identify CWE relevant for the threat model: CWE 1243: 
Sensitive Non-Volatile Information Not Protected During 
Debug 

2. State plain-language security requirement: “ROM (eFuse) 
should not be readable by debug.”  



 

 

3. Identify asset, objective (confidentiality, integrity, 
availability), and security boundary  

Asset: “ROM (eFuse)  

Security Objective: “must not be readable” is 
Confidentiality 

Boundary: Debug 

4. Use security rule template for CWE-1243: 

{{Security-sensitive Fuse Values}} when (debug 
mode enabled) =/=> {{User-accessible signals}} 

5. Add corresponding signals in design to rule template 

rom.mem[FUSED_END:FUSED_START]  
when(tcpu.csr.debug_mode)=/=> 
 debug.$all_outputs 
 

Doing so across all relevant CWEs provides a powerful 
mechanism to effectively cover one's security requirements and 
enable a more comprehensive security verification program. 

CWE-IFT leverages information flow tracking verification 
tools to cover common weakness enumerations to integrate into 
a property driven hardware security design flow. We described 
an example of the CWE-IFT methodology, that provides a 
quantitative way to measure hardware security coverage while 
using existing functional verification tools (including formal 
solvers, simulation, and emulation) to verify the security of the 
hardware. CWE-IFT is just a start in the important research of 
hardware security coverage. 

III. PRE-SILICON FAULT-INJECTION ATTACK 

ASSESMENT  

A. Introduction 

System-on-chips (SoCs) are prevalent in modern computing 
devices deployed to military and space applications, mobile 
applications, financial systems, transportations, even household 
appliances. SoCs are subject to an array of attacks, namely 
information leakage, side-channel leakage, fault injection, 
physical attacks, rowhammer, and more. Among them, fault-
injection attacks, though immensely powerful, have 
unfortunately received the least attention from the community. 

Fault-injection attacks are based on intentionally injecting 
faults into a system to cause confidentiality and/or integrity 
violations of security assets of the design or denial of service. 
Fault-injection attacks are capable of tampering with vulnerable 
locations in a device and enable attackers to access the secret 
assets of the design. Various attacks have been successfully 
demonstrated on encryption and digest algorithms such as AES, 
DES, RSA, and SHA [24-29]. More attacks can be applied to 
many other security-critical applications including security 
controllers, artificial neural network accelerators,  
homeomorphic algorithms, and post-quantum algorithms.  

The fault-injection vulnerabilities may be the result of poor 
design choices or automatically generated code by electronic 
design automation (EDA) tools (e.g., synthesis tools) when they 
try to optimize the design overheads without consideration of 
security as one of the decision factors. For example, some state 
encodings in controller designs make the design more 
susceptible to fault-injection attacks [30]. At the same time, 

synthesis tools may create don’t-care states that are connected to 
the protected states (that are responsible for controlling security-
critical operations) of the designs. It has been shown that these 
don’t-care states can be accessed by changing the clock 
frequency and creating clock glitching. As a result, the protected 
states can be accessed in the next clock cycle and the security 
mechanism of the design will be bypassed. 

Many different countermeasures such as tamper-proof 
packaging, error correcting codes, and triple modular redundant 
structures have been proposed so far to help with protecting 
against fault-injection attacks [31-32]. However, they would be 
expensive with the significant design effort and large area or 
performance overhead, making their application limited in 
practice. Moreover, the current EDA tools are not capable of 
effectively assessing the vulnerability of hardware designs 
against fault-injection attacks. As the current evaluations are 
limited and are done manually, it is difficult to ensure their 
effectiveness. Therefore, it is very important to be able to 
evaluate the susceptibility of designs to fault-injection attacks at 
pre-silicon while there are still opportunities to address the 
possible vulnerabilities efficiently.  

To successfully evaluate the susceptibility of the hardware 
designs against fault-injection attacks, we need to perform the 
following steps: (i) classification of fault-injection methods; (ii) 
building comprehensive fault models to measure the success rate 
of different fault-injection techniques; (iii) identifying security-
critical assets of the designs that are required to be protected 
against fault-injection attacks; (iv) creating fault lists based on 
the identified fault model and performing fault simulation to 
assess the resiliency of the design toward a specific fault-
injection technique that aims to bypass the confidentiality, 
integrity, and availability properties of a design. Finally, a set of 
countermeasures with a cost-performance-security trade-off in 
consideration should be implemented to mitigate the identified 
vulnerabilities of a design against fault attacks. 

B. Fault-Injection Attack Techniques 

Several fault-injection techniques have been developed to alter 
the correct functionality and security features of an integrated 
circuit. Fault-injection techniques can be classified into two 
major categories: non-invasive and invasive attacks. Focusing 
on non-invasive fault-injection attacks, faults can be injected in 
vulnerable locations of the design by tampering with the 
working conditions of the design like performing clock or 
voltage glitching [33-34]. 
Clock Glitching: In this technique, faults can be injected by 
violating the setup- or hold-time requirements of design flip-
flops. This may cause shortening the length of a clock signal 
temporarily and ultimately capturing the wrong value in 
memory elements of the design or skipping an instruction.   
Voltage Glitching: These faults can be injected by tampering 
power supplies of the device. For example, running the chip 
with lower supply voltage may result in leaving high-threshold 
transistors in the design open, and ultimately flipping bits in the 
design, latching wrong values, or skipping some instructions. 
Electromagnetic Radiation: Electromagnetic (EM) fault 
occurs when any IC surface faces a sudden variation of a 
magnetic field. The variation of magnetic field creates an 



 

 

electromotive force in the IC surface which in turn gives rise to 
a parasitic current in the wire loops in the IC. The amplitude of 
the parasitic current is proportional to the variation rate of the 
magnetic field. Electromagnetic fault injections mainly modify 
the behavior of power and ground networks which has a direct 
effect on the operation of D-flip-flops (DFF’s). When the fault 
occurs, the inputs of DFFs are disrupted and as a result, the 
DFFs may sample wrong values during their operation [35]. 

Faults can be injected in vulnerable locations of the design 
based on the following analysis: 

• Timing analysis of the designs and measuring hold-time 

and setup-time of the flip-flops - shorter paths are more 

likely to have a hold-time violation and longer and critical 

paths are susceptible to setup-time violation. Hence, the 

effect of EM and power faults (in case of slow down) on 

the critical paths are measured for security-critical 

applications. Such faults can result in a processor skipping 

an instruction or storing incorrect data in the memory. 

• Switching activity analysis to detect transitions that can be 

skipped using changing the clock frequency, reducing the 

voltage, or slowing down the design using EM-faults. 

• Distance measurement analysis from power supplies to 

critical gates (especially in the control flow of the design) 

to evaluate the effect of depleted power resources to create 

bit flips. 

• Fan-out and fan-in analysis as well as topology analysis of 

signals in security properties to measure the effect of power 

spikes to skip instructions or rounds of computations. Fan-

out cone analysis provides valuable information about the 

length of interconnects. Longer interconnects can be 

attractive locations for EM and power faults since they 

propagate the potential slow down effects of these faults 

and can cause setup and hold time violations and bit flips. 

 

 
Fig. 2 A high-level overview of the SoFI framework. 

Non-invasive fault-injections techniques are usually 
inexpensive compared to invasive approaches and do not need 
detailed knowledge about the design. For invasive attacks, such 
as FIB and probing [36], they require higher cost, de-packaging, 
and more knowledge of the design. The chip may be fully or 

partially damaged under the attack. These faults are local with 
better resolution.  

C. SoFI: A Security Property-Based Approach to Fault-

Injection Attack Assessment 

SoFI is a security property-driven vulnerability assessment 
framework for SoCs against fault-injection attacks recently 
proposed in [37]. A security property defines operations that 
must be present or absent thereof in a design to maintain the 
integrity, confidentiality, and availability of the design. The 
critical locations to a fault-injection attack are identified by 
checking whether any security properties can be violated by the 
fault. The more critical locations identified, the more vulnerable 
the design is to fault-injection attacks. Also, by identifying 
critical locations, local countermeasures can be developed 
making protection overhead reduced significantly. 

The overall flow of the SoFI framework is shown in Fig. 2. 
The SoFI framework takes the gate-level design, stimulus 
vectors, and security properties as the inputs. First, to map 
specific fault-injection techniques (e.g., clock/voltage glitch or 
laser) in the assessment, a fault list will be generated based on 
the fault models and their characterization. The characterized 
fault models enable us to simulate the fault injection in digital 
circuits for a specific fault injection technique, such as an 
external EM field or voltage glitching. Therefore, the fault 
simulation is performed as the next step to identify critical 
faults that can violate security properties without redundant 
fault locations.  

To preserve security properties, SOFI identifies the most 
critical design locations that injecting faults in them will result 
in violating the given security properties. The identification of 
these locations depends on the fault model, fault-injection 
technique, and completeness of provided security properties. 
After detecting the most vulnerable locations in the design, 
local countermeasures can be applied for an effective and low-
cost protection mechanism against fault-injection attacks. SOFI 
has been applied on AES, RSA, and SHA implementations, and 
the results show that the threat from fault-injection attacks can 
be significantly reduced by only protecting less than 0.6% of 
the design.  

D. COUNTERMEASURES 

After detecting vulnerable components of the design to 
fault-injection attacks, a set of countermeasures, like localized 
redundancy, should be applied to protect the design toward 
various fault-injection techniques/attacks. Some 
countermeasures focus on using sensors to detect the act of fault 
injection. However, the most common fault detection and 
mitigation method is based on creating redundancy, which 
tends to require more resources than the minimal necessary 
ones to complete the task. When a fault strikes, redundancy is 
utilized to mask the faults, thus maintaining the correct 
functionality of the system [24]. Typically, there are three types 
of redundancy in terms of available resources: hardware, 
information, and time. Hardware redundancy indicates adding 
extra hardware into the device to either detect or correct the 
impacts of the faults injected. One example is an M-of-N 
system, which consists of N modules and requires at least M to 



 

 

function correctly. The system fails when fewer than M 
modules are working properly. Dynamic redundancy is another 
type of hardware redundancy, where unused resources are 
activated when faults are injected in the currently active 
resource. However, hardware redundancy incurs high 
overheads (at least 2X), which may be too expensive to be used 
in practice. The most common information redundancy 
countermeasure is an error detection code (EDC). In EDC, 
check bits are incorporated into the original bits so that errors 
can be detected by comparing the predicted and the received 
check bits, which is widely used in memory units. Time 
redundancy can also be utilized to detect faults by re-running 
the same process on the same hardware. Below, we describe 
countermeasure for a number of fault-injection attacks.  
Clock/voltage glitching: When applying clock/voltage 
glitching attack, faults will propagate uniformly across the 
device, which can give an advantage to the attacker in terms of 
accessibility to rarely activated nodes and registers in the 
circuits. Countermeasures include internal oscillators, 
asynchronous logic, different threshold voltages and applying 
redundancies. One could use a temporal redundancy approach. 
Since the clock and voltage glitching are causing global faults, 
it is not feasible to protect the whole circuits with spatial 
redundancy. Temporal redundancy can be applied non-tiing 
critical parts of the circuits because it is not guaranteed that the 
global faults occur exactly the same due to their randomness 
when the same function is executed. 
Local heating: Local heating influences the whole design, it 
requires minimal technical knowledge, and the equipment is 
readily available. One drawback of this technique is that it tends 
to cause invasive faults in sensitive devices. Another downside 
is that the circuit may be destroyed through excessive heating. 
Causing multiple bits to flip using local heating may be highly 
possible when there is an excessive heating.  
EM pulses: EMFI (EM fault injection) causes transient voltage 
drops which may cause a significant amount of delay variation 
in the circuits. Sensors that can measure the change in circuit 
timing can be used to detect EMFI. For instance, time-to-delay 
converter (TDC) sensors and glitch detectors respond to delay 
variation in integrated circuits, so they can be used to detect 
EMFI. However, EMFI may impact the circuit locally, hence 
only one detector in a large SoC may not be sufficient to 
effectively detect injected faults in the entire circuit [38]. So, 
several detectors may be needed for the uninterrupted operation 
of an IC.  We acknowledge that power supply noises, 
temperature, and process variation can also cause delay 
variation in the circuits [39]. As a result, it would be 
challenging to differentiate between EM-based fault injection 
and the above-mentioned process and environmental variations. 
This may require detectors to be calibrated precisely so as to 
efficiently detect EMFI.  
Light radiation: Different from the light beam, light radiation 
exploits the light such as UV light to have an influence on the 
whole circuit instead of some certain parts. Thus, 
countermeasures against light radiation could be similar to that 
of EM pulses.  

Light beam: Although light beams can be focused on a specific 
area of the circuit, it could be considered a weak version of laser 
beam attack, because the wavelength of the visible light used 
by light beam attacks covers more than ten times of the 
transistors’ feature size. Different from light radiation, which is 
only applied to attack memories in common cases, a light beam 
can also flip the bits in FFs. One could apply redundancy or 
embed sensors into the sensitive functions in the design.  
Laser beam: A laser beam attack is an improvement of a light 
beam attack as it can focus on one or part of a cell. 
Countermeasures include protective metal layers, metal shield, 
tamper sensors, redundancies, and sensors. Note, most of the 
recent approaches use backside attacks, hence one can use 
tamper-detection sensors and redundancies. Some prior 
research has demonstrated an approach to inject a one-bit fault 
in the AES module with a laser beam. However, such 
approaches are based on one critical assumption: different 
faults injected at a certain round of encryption will surely have 
different final outputs. Hence developing protection against 
such attacks is necessary. 

Focused Ion Beam: Focused Ion Beam (FIB) is probably 
the most accurate and powerful fault-injection technique. FIB is 
able to inject multiple-bit faults at any location of interest in a 
circuit. When multiple-bit faults are injected, the conventional 
redundancy-based mitigations are no longer effective since the 
voter (typically TMR’s voter) can also become corrupt. 
Countermeasures for this attack include spatial/temporal 
randomization where one would distribute the function 
execution and resources randomly in the circuit, thus, even with 
guaranteed multiple-bit faults, much more effort and analysis 
will be needed for attackers to break the circuits.  

IV. AN OVERVIEW OF SECURITY ASSURANCE FOR ELECTRONIC 

DESIGN INTEGRATION (SA-EDI) AND ITS APPLICATIONS 

The importance of security in the electronic systems many 
of us rely on has become obvious to semiconductor design and 
manufacturing companies but most hardware security assurance 
practices in industry are still performed manually using 
proprietary methods, which can be expensive, time consuming, 
and error prone due to the ever-increasing complexity of 
systems. The Accellera IP Security Assurance (IPSA) Working 
Group [40], consisting of security and EDA experts is proposing 
a general and portable IP security specification standard 
describing the IP security concerns (threat model) and guidance 
to EDA vendors on how to produce security assurance collateral. 
This will enable tools for automation of security assurance of 
systems/subsystems/IPs with the main focus on security 
concerns with regards to IP integration. As IPSA will be 
releasing the Security Assurance for Electrical Design 
Integration (SA-EDI) standard in 2021, this paper introduces the 
collateral, methodology and a case study of application of the 
standard. 

A. Introduction 

Today’s Systems on Chip (SoC) are very complex and 
consists of multiple reused IP blocks and software running on 
one or many embedded processors. This enables fast 
development and flexibility in applications by loading different 
software. Although Hardware Security Design Lifecyle (HSDL) 



 

 

[40] methodologies for design for security and security 
assurance have been around for a decade, they are not widely 
used. If security is considered, it is often manual e.g., review of 
RTL files or penetration testing after fabrication. These methods 
are incomplete and may lead to security weaknesses in the final 
product. To be effective HW security needs to be addressed 
during the design and verification phase. However, a lack of 
standards hampers this effort.  

Using third party IP saves lots of design and verification 
effort and is done in a majority of SoCs. However, the security 
implications of integrating IP can be huge and they are generally 
not understood. The IP creator doesn’t know the application 
where the IP will be used and the IP integrator don’t know what 
security risks are associated with the IP. Are there features or 
limitations in the IP that will compromise security in the 
application if not mitigated? 

The Security Assurance for Electrical Design Integration 
(SA-EDI) work addresses this issue by defining a procedure and 
a format to capture security concerns in an executable 
specification to be delivered along with the IP. The IP provider 
documents security concerns in the IP that the user should be 
aware of. The IP integrator now knows the security risks in the 
IP and can mitigate them if applicable in his system. The 
standard also allows for the IP integrator to validate the integrity 
of the data delivered and to verify mitigations in the SoC.  

For additional background, see the IP Security Assurance 
Standard whitepaper [41]. This section is organized as follows. 
Subsection IV.A gives an overview of SA-EDI followed by a 
case study in Subsection IV.B. Subsection IV.C concludes the 
paper with a short summary. 

B. SA-EDI Overview 

     The objectives of the standard are, to improve 
trustworthiness of IP and IP providers by including a verifiable 
executable specification with the IP, to assist IP integrators in 
understanding the security concerns in the IP and to reduce 
security risk, and to accelerate tool development to enable 
security assurance. The methodology includes references to a 
knowledgebase that lists potential IP security concerns. One 
such database is MITRE’s Common Weakness Enumeration 
(CWE) Error! Reference source not found.. It provides a 
common reference for identifying and describing weaknesses 
between IP provider and IP integrator. 
 
As shown in Fig. 3, the standard defines four JavaScript Object 
Notation (JSON) [42] data objects that are included in the IP 
Bundle delivered to the IP integrator. The IP Bundle or 
collection of files also contains the IP design, verification code 
and documentation. The four objects are:  

• Asset Definition 

• Database  

• Element 

• Attack Point Security Objective (APSO)  
The Asset Definition lists ports or storage locations in the 
design that may violate security objectives if they are modified 
or are readable outside the IP. The Database object specify 
which Security Weakness Knowledge Base (SWKB) is used by 

the IP provider. The Element object identifies which inputs can 
affect the asset and to which outputs the asset can leak 
information. It also contains references to related weaknesses 
e.g., CWE entries. The APSO object is created from the 
Element and includes security objective for the asset i.e., 
Confidentiality, Integrity or Availability. The Attack Points are 
the relevant inputs or outputs identified in the Element object 
with an optional condition specifying when the security 
objective is violated. 
 

 

Fig. 3. Integrating the proposed security assurance flow with design and 
verification flow. 

C. Case Study: SA-EDI Methodology Steps 

There are several steps in the process of creating an SA-EDI 
compliant IP Bundle and additional steps for the IP Integrator 
to utilize the information. We will use a typical HW Root of 
Trust (HRoT) module (Fig. 5) as a case study to illustrate the 
steps and the data created. 
The first step is identifying assets i.e., design elements that may 
have security implications for the IP integrator. The full 
hierarchical name of each asset is captured in Asset Definition 
objects. 
The One Time Programmable (OTP) memory contains 
encryption keys, programmed at device manufacturing. 
Unauthorized access to these may have security implications 
for the product that integrate the IP. To make the HRoT IP more 
flexible and easier to debug, the OTP is readable through the 
debug interface and the hrot_iface interface. The IP provider 
captures this information in an Asset Definition object (Fig. 4) 
to make the IP integrator aware of the risks.  

 
The second step is for the IP provider to decide which database 
to identify weaknesses related to the asset to use. In this case 
MITRE’s CWE is used. A Database object (Fig. 6) is created 
that will be referenced in the Asset Definition object. 

{ 
  "Name" : "hrot.otp.mem.mem_out", 
  "Description" : "Fuse values contains keys for AES", 
  "Family" : ["Storage"], 
  "Type" : ["Data", "Critical", “Secret”], 
  "Database_ID" : ["CWE VIEW: Hardware Design"] 

} 

Fig. 4. Asset Definition Object. 



 

 

 
Fig. 5. Hardware Root of Trust Module Example. 

The third step is to generate two Element Objects for the asset. 
Each Element respectively identifies which IP ports are in the 
fan-in and fan-out cone of the asset and may thus affect 
Integrity and Confidentiality of the asset. The Description, 
Family and Type fields in the Asset Definition are used to 
determine relevant CWE entries for the asset. Here, two 
applicable CWE entries are: 

• CWE-1274: Insufficient Protections on the Volatile 
Memory Containing Boot Code Error! Reference 

source not found. 

• CWE-1243: Exposure of Security-Sensitive Fuse 
Values During Debug Error! Reference source not 

found. 
The Element Object (Fig. ) is tool generated as manually 
determining fan-in and fan-out for an asset in a complex design 
is not feasible. 
 

Fig. 7. Element Objects. 

The security objective for the fuse values is confidentiality. The 
fourth step is to manually create APSO objects for the 

corresponding Element object. Here, there are two different 
attack surfaces, the debug interface and the hrot_iface interface. 
They have different conditions under which Confidentiality of 
the asset will be violated so two APSO objects for the two cases 
(Fig. 8) are created.  
 

Fig. 8. Attack Point Security Objective Objects. 

All SA-EDI data objects for the IP are now created. The last 
step is to include them in the IP Bundle delivered to the IP 
integrator. Before delivering the IP Bundle, the IP creator needs 
to verify that the attack points and conditions specified are 
correct and that no additional attack points exist. 
The tool that generated the Element objects may also create 
information flow security rules or path verification assertions 
to be used in simulation or formal verification, respectively. For 
example, using the fields in the OTP_CONF_DBG APSO 
JSON object, it will generate a rule such as the following in an 
executable form. 
 

“Information from hrot.otp.mem.mem_out will not flow to the 
dbg_dout port when dbg_mode is true and the address is in range 
[‘h3600:’h3500]” 

This rule is expected to fail since the APSO object 
communicates the attack points and conditions for how the 
security objective is violated. It is also easy to verify that 
information flow does not occur when the condition is false or 
that information doesn’t flow to other outputs. Information flow 
rules to verify there is no information flow to any other output 
of the IP are easily tool generated. 
The IP Integrator receives the IP Bundle and uses an EDA tool 
to generate Element objects from the IP RTL source and the 
Asset Definition object for each asset. The generated Element 
objects are compared to the Element objects delivered in the IP 

{ 
  "Name" : "OTP_CONF_HROT", 
  "Asset Name" : " hrot.otp.mem.mem_out ", 
  "Security Objective" : "Confidentiality", 
  "Description" : " Fuse values contains keys for AES that can be 
read from hrot_iface", 
  "Condition" : "(hrot_rwn==1) && (addr > ‘h3500 && 
addr<’h3600)", 
  "Security Weakness Reference" : ["CWE-1274"], 
  "Attack Points" : ["hrot_dout,", “hrot_rdy” ] 
} 
{ 
  "Name" : "OTP_CONF_DBG", 
  "Asset Name" : " hrot.otp.mem.mem_out ", 
  "Security Objective" : "Confidentiality", 
  "Description" : " Fuse values contains keys for AES that can be 
read from debug interface", 
  "Condition" : "(dbg_mode==1) && (addr > ‘h3500 && 
addr<’h3600)", 
  "Security Weakness Reference" : ["CWE-1243"], 
  "Attack Points" : ["dbg_dout" ] 
} 

{ 
  "ID" : "CWE VIEW: Hardware Design", 
  "Description" : "A community developed list of hardware 
weakness types. 
https://cwe.mitre.org/data/definitions/1194.html", 

“URI" : “LocalDrive:/data/SWKB/cwe/cwe43.csv",   
"Version" : “4.3" 

} 

Fig. 6. Database Object. 

{ 
  "Asset Name" : "hrot.otp.mem.mem_out", 

"Direction" : "Output", 
"Security Weakness Reference" : ["CWE-1274","CWE-1243"], 
"Ports" : ["dbg_dout", “hrot_dout”, “hrot_rdy”], 
  "Parameters" : ["wd_top.COUNT_SIZE"] 
} 

{ 
  "Asset Name" : "hrot.otp.mem.mem_out", 

"Direction" : "Input", 
"Security Weakness Reference" : ["CWE-1274","CWE-1243"], 
"Ports" : ["dbg_mode", “dbg_addr”, “dbg_din”, “hrot_addr”, 

“hrot_rwn”, “hrot_din”] 
} 

Fig. 9. Example of a tool-generated rule. 



 

 

Bundle and they are expected to match. If not, the integrity of 
the IP Bundle is violated and should be resolved before 
proceeding. 
Next, the IP Integrator reviews the APSO objects and decides 
which ones are applicable to the product being designed. The 
debug port of the SoC will not be connected in the end product 
so the security concern communicated in the 
OTP_CONF_DBG object does not need to be mitigated. An 
SoC-level APSO object communicating the attack points to the 
SoC user may be created. The attack points identified by the 
OTP_CONF_HROT object needs to be mitigated. The IP 
integrator implements access control in the module connected 
to the hrot_iface interface to prevent any read of the AES keys 
from outside the HRoT module. To verify that the mitigation is 
effective, the integrator generates a similar information flow 
rule from the APSO object as was used by the IP provider. The 
only difference is that the destination is an SoC port or signal. 
When verifying the rule in SoC level simulations, it is expected 
to not fail since the leakage was mitigated. This ensures that no 
security weaknesses are introduced when the IP is integrated in 
the SoC. 

D. Section Summary  

We have seen how the required SA-EDI data objects are 
created by the IP Provider and how both the IP Provider and IP 
Integrator can use them for verifying security requirements of 
the IP and system. It lowers the risk for the IP Integrator since 
the security concerns of the IP are known and can be mitigated. 
Using SA-EDI is easy since data objects and verification code 
can be automatically generated by EDA tools.  

V. SUMMARY 

We gave an overview of our CAD for Security journey and 
how we planned to bring out our vision to reality to have proper 
EDA support for Design for Security and Security Assurance. 
Although, the industry have progressed from the stage that 
security assurance was considered overhead to the current stage 
that it is an essential part of the product development, the CAD 
for Security supporting systematic, scalable, and comprehensive 
Design for Security and Security Assurance has just started 
evolving for a while. We expect that with collaborative research 
and development among academic and industry experts: (a) it 
will get to a level that we have standard and portable security 
models to be understood by development team and EDA tools, 
(b) EDA vendors will provide multiple tools and many options 
for Design for Security and Security Assurance (similar to their 
portfolio of tools Design for Test and Validation), (c) design 
houses will have established flows to use the EDA tools with 
acceptable overhead to hit time-to-markets, and (d) product 
design and development teams will be security aware and use 
the security tools and standards to model the security of their 
designs approbatory, built security into their products, and 
perform the security assurance required easily and efficiently.  

We introduced a couple of solutions to contribute to the 
maturity of CAD for Security tools. Solutions like CWE-IFT 
leverage information flow tracking verification tools to cover 
CWE’s to integrate into a property driven hardware security 
design flow. Standards such as SA-EDI can be used to create 
portable threat models to be handled by EDA tools for providing 

better security assurance for IP’s and their integration within a 
subsystem or a system. Solutions like SOFI based on security-
properties for assessment and mitigation of advanced attacks 
become available to product development teams. 

There is still a long way to get to our destination and we 
would invite other likeminded experts who believe on creating 
systemic CAD for Security solutions to address the needs of the 
future, to join us.  
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