
Engaging with the Wiphala:
A Code-Generation Hardened CS1 Final∗

Calvin Deutschbein and Shouvik Ahmed Antu
Willamette University

Salem, OR 97301
{cdeutschbein, sahmed}@willamette.edu

Abstract

As co-instructors in introductory computing classes at a small col-
lege, in Fall 2024 we needed an approach to code generation tools that
at once equipped new students to be effective in a world in which those
tools existed, but also still benefited from the computational thinking
and literacy skills often covered in the first semester of a computing
course. Many introductory computing assignments, including some sub-
set of SIGCSE Nifty assignments, remain perhaps too challenging for
many introductory students even when specified to such a level that
freely available code generation tools, such as ChatGPT or Gemini, are
able to produce perfect solutions. However, there remain many tasks
that are quite difficult for code generation tools, which by construction
are specialized to text analysis and text generation. In our Fall 2024
introductory courses, we deployed an experimental final for which the
prompt was to generate a certain form of image informed by cultural
context to communities adversely impacted by the surge in data center
demand in the U.S.. Students would necessarily analyze and describe an
image, and critically engage with the consequences of over-reliance on
code generation, in order to complete the assignment. We achieved our
desired grade distributions and believe we differentiated students who
were learning material from students who were outsourcing coursework
to automated tools.

∗Copyright ©2022 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.

1



1 Introduction

Figure 1: The Wiphala is a square emblem commonly used as a flag to represent
some native peoples of the Andes.

At our university, the entry point for computer science education is “CS 151:
Introduction to Programming in Python”, which is a Python translation of an
older class in Java based on a Stanford curriculum leveraging SIGCSE Nifty as-
signments such as Adventure Game [5], Breakout [6], Enigma Machine [7], and
Wordle [4]. These are established assignments, with years of success training
new computer scientists, and extremely in-depth instructions provided directly
to students and available widely online. Coincidentally, making these assign-
ments more accessible for students has also made it easier for students to not
engage with these assignments at all due to the availability of ChatGPT, Gem-
ini, and similar frameworks capable of code generation. We perceive a growing
consensus that reliance on such tools hampers cognitive development [3] and
therefore should be addressed in course design.

In this paper, we will present our novel final on rendering the Wiphala
(Fig 1). We believe this final supports student learning and allows students to
engage with code generation and its limitations.

We are motivated by a particularly troubling phenomenon. The CS1 cur-
riculum leverages a Python port of the Portable Graphics Library “PGL” [8]
which often confounded earlier code generators expecting PyGame or similar
libraries. However, specifically in the case of the Breakout assignment, both
ChatGPT and Gemini generated correct solutions without being provided a
description of the Python PGL library while struggling on more general tasks.
We suspect exact solutions to Nifty assignments are present within training
data in some capacity.

Nifty assignments are unified in having clear (1) learning objectives and
(2) assignment formats, which we can mimic for novel assignments intended to
defeat code generation. Our final has the following learning objectives:

2



1. Fundamental Python

2. Reading Python

3. Strings and Files

4. Interactive Graphics

5. Defining Classes

As a rule, “Strings and Files” maps to the text-based Adventure Game, “In-
teractive Graphics” maps to graphical Breakout game, and “Defining Classes”
maps to the “Enigma Machine” ciphers. “Fundamental Python” and “Reading
Python” are expected to be manageable by students with debugging experience.
We mapped these objectives to what we expect to be AI-hard subproblems,
synthesized subproblems into a coherent assignment, and applied the assign-
ment to a culturally relevant application domain.

We found:

1. Our approach achieved a grade distribution consistent with pre-code gen-
eration classes and our personal assessment of student engagement, while
allowing use of code generation.

2. Our approach maintained the core learning objectives of an ACM 2013 [2]
CS1 course.

3. Our approach equipped students to understand the benefits and limita-
tions of code generation.

4. Our approach raised critical questions about the broader social impacts.

We have made a generalized form of this assignment (replacing all depen-
dencies with PyPI alternatives) available publicly on GitHub [1], with web-
hosted instructions1, available under MIT License for all code artifacts and
with fair use images documented with source attribution. We will provide
solutions by request to verified instructors.

2 Format

Our introductory course was structured across lectures, problem sets, and
projects but the primary learning content is delivered via the projects - the
four (4) Nifty assignments and a fifth pseudo-Nifty assignment “ImageShop”, a
rudimentary image editing program.

1https://cd-public.github.io/ccscrm/

3



We regard the first three projects as scripting assignments. They are as-
signed over the course of one week and completed in one file (or module). For
these assignments. Students write functions which interact with a provided
template. The final two projects - “Enigma Machine” and “Adventure Game”
were programming assignments spanning multiple weeks, multiple files, and
potential multiple team members. In Fall 2024, average dropped sharply from
the scripting assignments (averages of 84, 87, 87 percent) to programming (av-
erages of 79, 69 percent). We believe this drop may be associated with lacking
the technical skill to prompt a code generator for more than isolated functions.
Therefore, we administered a highly interdependent final exam.

Each assignment was split into “milestones” well suited to daily work. For
example, the “Wordle” assignment was released Monday, had six zero-indexed
milestones and was due the next Monday, giving students a final day after
expected completion to debug any last-minute errors. This milestone struc-
ture and its familiarity to students supported a similarly structured final with
multiple learning objectives as objectives could be mapped to milestones.

We assigned problem sets and projects via GitHub classroom as a code
repository and separately provided instructions in HTML. In response to stu-
dent feedback, we organized the assignment descriptions into one HTML <details>
block per milestone.

3 Learning Objectives

We will describe a learning objective, how widespread availability of code gen-
erators has impacted assessment, and our solution.

3.1 Strings and Files

Existing finals prompted students to, for example, find the first numeric digit
in every line of a file containing lines of ASCII characters. This is trivial for
code generation or programmers familiar with library functions.

As an alternative, we ask students to read the names of colors and their hex
values from a file. Critically, we introduce what we term intentional ambiguity,
that is, we do not specify the format in the file or the format which will be most
useful for latter milestones. Rather, students must design and then implement
a solution. While we provide a CSV file, and reading CSV files into Python is
trivial, we pose a number of complexities:

rojo 219 10 19
naranja 236 120 8
amarillo 252 222 2
blanco 255 255 255

4



verde 1 138 44
azul 6 69 177
violeta 117 40 100

We mix alphabetical and numerical values, provide no column labels, pro-
vide non-English color names, and space-separate rather than comma-separate.
We refer to these as “red-green-blue” color descriptions in the text but otherwise
expect students to either know or be able to determine how to work with color
data in this format. Students also must independently determine whether, for
example, to return multiple lists of strings and integers, or a dictionary of lists,
or any other solution. We saw numerous possible solutions within high-scoring
final submissions, and are pleased to have perceived space for students to make
design decisions.

3.2 Interactive Graphics

Existing final examinations prompted students to, for example, render a pie
chart from a user-provided list of percentages. This is obviously trivial to code
generators via library functions or rudimentary geometry.

We ask students to generate a Wiphala (Fig. 1). It requires listing colors in
the same cycle, but with a different starting point, across rows (or columns).
We believe that it is of comparable difficulty to write a loop- or slice-based
solution as to instruct a code generator with sufficient precision. Therefore,
we feel students necessarily approached the computational thinking problem
of multidimensional indexing. Naive generated code often produced a bottom-
left-to-top-right diagonal, which we found among low-scoring submissions.

Separately, we take great care to avoid referring to the Wiphala by name
in the instructions, as this is often sufficient prompting for a code generator to
produce competitive solutions. We aim to resolve this tension in future work,
perhaps with a novel application domain.

Lastly, we take care to inform students what the flag represents - the self-
determination of the Andean people - with some allusions to the political im-
plications of U.S. tech industry expansions on mineral and labor rights in the
Andes. We hope that students carry with them a sense of the true cost of
relying on exascale compute clusters for trivial tasks like list/array slicing as
they continue their careers.

3.3 Reading Python

Traditionally the final exam began with a code tracing exercise. For example,
we may ask a student what the following returns:

def conundrum():

5



Figure 2: The Wiphala of other Suyu (Anti, Chinchay, and Kunti).

array = []
for i in range(6):

array.append(0)
for j in range(i, 0, -1):

array[j] += j
return array

We believe we have leveraged the Wiphala to achieve a similar goal. In
the prior section we show a specific, regional Wiphala, for the Qulla Suyu
(Qulla region). Other recognized regional Wiphalas are differentiated by “long
horizontal” color as shown in Fig. 2. Rather than prompt students as to the
outcome of code, we prompt students to write code that generates some out-
come specified with imagery, rather than text, which may pose a barrier to code
generation. Additionally, we manually render the flags as fixed-pixel HTML
elements rather than providing an image that can be pasted into a code prompt.

A small number of students entertained manually specifying all 49 tiles in
the earlier Wiphala, and this subproblem encouraged use of programming logic.

3.4 Defining Classes

Existing final exams often ended with a larger task involving implementing a
class that, for example, created numbered labels or recorded the dot distri-
bution of a domino. Given Python iterators and collections, respectively, and
expect students will often instead interact with classes implemented within
libraries, such as PyTorch tensors, or Flask APIs. While we have a University-
specific implementation utilizing classes, we generalize to a NumPy ndarray.

We ask students to (1) read file data based on file names provided in the
CSV file from an earlier problem, (2) interpret these files as images, (3) crop
images to squares, and (4) scale images to be the same size. Finally, rather
than creating a Wiphala of colors, they create a Wiphala as a collage over
these images as shown in first image of Fig. 3. These are fair use images

6



inspired by each individual color. For example, we selected an image of a
Bolivia lithium mine as “el símbolo de las riquezas naturales” (the symbol of
the natural resources), represented by the verde color in the Wiphala, and
provide a README with this note and source attribution.

We retain a small amount of intentional ambiguity. We could define this
operation in pseudo-code: if the pixel at location (x, y) would be of color
“amarillo”, write the “amarillo.png” value at this index to the output pixel
array. Rather, we provide example output and a brief recommendation to
visually inspect the long diagonal and the constituent files. The distribution of
final scores suggests few-if-any students reaching this problem were confused
by these instructions.

Figure 3: True-color and color-scaled collages, both provided to students.

The collaging effect appears to confound the image processing capabilities
of most code generation tools. Gemini inferred it was observing a 5-by-10
grid of 50 individual images with no pattern, even when prompted to use 7
provided images. ChatGPT inferred it was provided with single image file of
7 concatenated tiles and was trying to create a 10-by-10 grid.

3.5 Fundamental Python

In the context of the final exam, the term “Fundamental Python” is used to re-
fer to what is often termed numerical computing, like computing the Racamán
sequence. We used NumPy vector operations, the foundation of early numer-
ical computing efforts in Python. For each image, after cropping and scaling,
we ask students to convert the true-color images to monochrome. We term
this “colorscale” to remind students of grayscale from an earlier assignment
(“ImageShop”). To support them, we specify:

1. Example code to compute luminance:

r, g, b = color; (4*g + 3*r+b)//8

7



2. That high luminance should become “rojo” monochrome value.

3. That low luminance should become all zeros (black).

Of note, we are not aware of particularly succinct ways to describe this
process absent color science terminology outside an introductory computing
scope. Separately, we provide a vector-optimized integer luminance calculation
to partially confound code generation tools, which seemingly expect to perform
these calculations over floating point values. We provide the second image in
Fig. 3 as an example to our students with the caveat that their code must
additionally be able to produce similar images for the other regions.

4 Results

We achieved our preferred point distribution of approximate uniformity, allow-
ing us to differentiate student achievement. We note we applied a generous
curve (not shown). An uncomfortably large number of students earning zero
or nearly zero points. Anecdotally, from in-class exercises and office hours,
we suspected a population of students earned high marks on assignments but
could not write a single line of code, even given hours to do so. We suspect
this population gave rise to the large bin of low scores shown in Fig. 4.

Figure 4: We achieved a quasi-uniform distribution.

We found the final score uncorrelated with project or midterm scores, as
shown in Fig. 5. We plot horizontal homework (code generation allowed),
versus vertical midterm (code generation disallowed but suspected), versus
colorized final score (code generation unhelpful).

8



Figure 5: Project (horizontal) and midterm (vertical) performance did not
predict final (colorized) performance.

5 Summary

Our impression was that highly motivated students were completing exams
and projects manually with minimally but non-zero errors and being scored
lower than students who solely used code generation, including in violation of
midterm honor policy. Many high scores on the final were students we identified
as strong scientists, but lacked interest to complete portions of assignments
they did not find algorithimcally interesting. Conversely, the final seemed
to firmly differentiate an otherwise co-mingled population of relatively high-
scoring students between independent and assisted coders. With some relief,
we do not seem to be measuring testing anxiety given the low correlation
(r2 = .0057) with midterm scores. That said, we want to be more confident we
are measuring student learning and not some other factor, and hope to deploy
similar midterms and in-class exercises in Fall 2025 for students to be better
prepared for the eventual final.

Ultimately, we believe this final rewarded hard-working students. We also
hope to have persuaded our class of the usefulness of course content even in an
environment with widespread access to industry-grade code generators.

6 Special Thanks

We profusely thank Professor Jed Rembold, our CS 151 co-instructor, for pro-
viding thoughtful feedback, showing patience during development, and main-
taining all five existing projects, among many other contributions..

9



References

[1] Calvin Deutschbein. Final. https://github.com/cd-public/ccscrm. 2025.

[2] Association for Computing Machinery (ACM) Joint Task Force on Com-
puting Curricula and IEEE Computer Society. Computer Science Cur-
ricula 2013: Curriculum Guidelines for Undergraduate Degree Programs
in Computer Science. New York, NY, USA: Association for Computing
Machinery, 2013. isbn: 9781450323093.

[3] Nataliya Kosmyna et al. Your Brain on ChatGPT: Accumulation of Cogni-
tive Debt when Using an AI Assistant for Essay Writing Task. 2025. arXiv:
2506.08872 [cs.AI]. url: https://arxiv.org/abs/2506.08872.

[4] Nick Parlante et al. “Nifty Assignments”. In: Proceedings of the 53rd ACM
Technical Symposium on Computer Science Education V. 2. SIGCSE 2022.
Providence, RI, USA: Association for Computing Machinery, 2022, pp. 1067–
1068. isbn: 9781450390712. doi: 10.1145/3478432.3499268. url: https:
//doi.org/10.1145/3478432.3499268.

[5] Nick Parlante et al. “Nifty assignments”. In: Proceedings of the 33rd SIGCSE
Technical Symposium on Computer Science Education. SIGCSE ’02. Cincin-
nati, Kentucky: Association for Computing Machinery, 2002, pp. 319–320.
isbn: 1581134738. doi: 10.1145/563340.563466. url: https://doi.
org/10.1145/563340.563466.

[6] Nick Parlante et al. “Nifty assignments”. In: Proceedings of the 37th SIGCSE
Technical Symposium on Computer Science Education. SIGCSE ’06. Hous-
ton, Texas, USA: Association for Computing Machinery, 2006, pp. 562–
563. isbn: 1595932593. doi: 10.1145/1121341.1121516. url: https:
//doi.org/10.1145/1121341.1121516.

[7] Eric Roberts and J. Jedediah Rembold. “Nifty Assignments: Enigma Ma-
chine Simulator”. In: Proceedings of the 54th ACM Technical Symposium
on Computer Science Education V. 2. SIGCSE 2023. Toronto ON, Canada:
Association for Computing Machinery, 2023, p. 1276. isbn: 9781450394338.
doi: 10.1145/3545947.3573220. url: https://doi.org/10.1145/
3545947.3573220.

[8] Eric Roberts and Keith Schwarz. “A portable graphics library for intro-
ductory CS”. In: Proceedings of the 18th ACM Conference on Innovation
and Technology in Computer Science Education. ITiCSE ’13. Canterbury,
England, UK: Association for Computing Machinery, 2013, pp. 153–158.
isbn: 9781450320788. doi: 10 . 1145 / 2462476 . 2465590. url: https :
//doi.org/10.1145/2462476.2465590.

10


