
“Who ya gonna call?”
Cybersecurity for the Spectre Era

Calvin Deutschbein
1

...the Spectre Era

2

3 Jan, 2018: Google Project Zero et al. publicly report the Spectre vulnerability.

● Spectre targets hardware (all Intel processors since 1995)
● Spectre leaves no traces in traditional logs
● Spectre went undetected for over two decades

Learn more: meltdownattack.com/

https://meltdownattack.com/

3

What is Spectre?

4

The Branch Prediction Problem in 1995

5

To avoid delays, x86 chips “guess” what’s next

6

But what if chips guess an unused branch?

Speculative execution can access memory...*

7*This is the point of speculative execution.

Speculative execution can access memory*

8

...and bypass memory protections*

*more of an accident

Exploiting the Vulnerability
Spectre is a vulnerability - it provides an entry point for an adversary.

● Spectre: “Branch misprediction may leave observable side effects”

Adversaries must exploit the vulnerability to gain access to secure data.

● Exploit: “Using observable side effects to access secure data.”

The mere presence of the vulnerability in on hardware not running code capable of
exploiting the vulnerability will not result in a security violation.

9

How adversaries can exploit Spectre

10

How adversaries can exploit Spectre

11

How adversaries can exploit Spectre

12

Thus, an attacker gains access to secure data

13

Three attack surfaces:
● Timing

○ Timing cache hits

● Microarchitecture
○ Branch prediction
○ Below operating system or assembly

● Multiple Executions
○ Multiple runs expose timing differences

14

So… “Who ya gonna call?”

15

Mining Behavior
My research shows the technique of
specification mining can find:

● Temporal properties, for timing
● Closed source CISC architecture

properties, for microarchitecture
● Hyperproperties, properties over

multiple traces of execution

16

(that’s me)

For x86-64, no specification exists - so we create one.

17

Defining Secure Behavior

Specification Mining
● Miners accept as input traces of execution.

○ For example, the debug output of an x86-64 processor booting Linux.

● Miners find properties that hold over the traces.
○ For example, “if reset is active, then the privilege level is supervisor”.
○ RESET==0 ⇒ CURRENT_PRIVILEGE_LEVEL==0

● Miners contain powerful inference engines for high performance.

18

Undine: Mining Temporal Properties
Can linear temporal logic properties that model secure behavior be discovered
using specification mining?

A library of typed templates for my miner, Undine, enable it to find security
temporal properties, including properties using G (Globally) or X (Next) operators.

19

Difficulties Finding Security Properties

Too Many
Properties

Properties Not
Security Related

Do Not Capture
Semantic Info

20

Sample Trace
reg_a==1

reg_b==1

reg_c==0

reg_d==0

reg_a==reg_b

reg_c==reg_d

Without separate events there are many properties
Mined 30 G(x → y)
reg_a==1 → reg_b==1

…

reg_a==1 → reg_c==reg_d

…

reg_c==reg_d → reg_a==reg_b

21

Sample Trace
reg_a==1

reg_b==1

reg_c==0

reg_d==0

reg_a==reg_b

reg_c==reg_d

Templates Refine to Security Properties
Mined 8 G(R → R-R)
reg_a==1 → reg_a==reg_b

reg_a==1 → reg_c==reg_d

reg_b==1 → reg_a==reg_b

…

reg_f==0 → reg_c==reg_d

22

Register Roles Refine Further
Sample Trace
reg_a==1

reg_b==1

reg_c==reg_d

Mined 2 G(R → R-R)
reg_a==1 → reg_c==reg_d

reg_b==1 → reg_c==reg_d

23

Sample Trace
reg_a==7

#tick

reg_a==3

#tick

reg_a==5

...

Register Slices Uncover Semantic Meaning
Mining G(a)
<no properties>

24

Register Slices Uncover Semantic Meaning
Mining G(a)
reg_a[0]==1

Sample Trace
reg_a[0]==1

reg_a[1]==1

#tick

reg_a[0]==1

reg_a[1]==1

#tick

reg_a[0]==1

reg_a[1]==0 25

Tested on 3 Processors

OR1200 mor1kx RISC-V
26

Undine: Mining Temporal Properties
Undine can discover linear temporal logic security properties such as those related
to correct initialization of a system using a library of typed templates.

27

Mining Behavior
My research shows the technique of
specification mining can find:

● Temporal properties, for timing
● Closed source CISC architecture

properties, for microarchitecture
● Hyperproperties, properties over

multiple traces of execution

28

(that’s me)

Astarte: Mining Closed Source CISC
How can properties that model secure behavior of closed source complex
instruction set computer (CISC) designs be discovered using specification
mining?

Mining for control signals in the design then mining preconditioned on those
control signals yields security properties of the design.

29

Recall: Undine Tested on 3 Processors

OR1200 mor1kx RISC-V
30

All were Open Source and RISC! x86 is neither!

31

The x86 specification has many control signals...

32

Control Signals Partition the Space

33

So I created a tool to find properties using signals.

34

Front End: Registers Placed in Groups

35

Property Refinement

36

Control Signals Partition the Space

37

Preconditions capturing changes
to signals capture transitions
between different modes of the
processor.

Preconditions holding
signals constant capture the
behavior defined by a control
bit taking on a certain value.

Astarte: Mining Closed Source CISC
Specification mining can discover security properties preconditioned on control
signals in closed source CISC designs.

38

Mining Behavior
My research shows the technique of
specification mining can find:

● Temporal properties, for timing
● Closed source CISC architecture

properties, for microarchitecture
● Hyperproperties, properties over

multiple traces of execution

39

(that’s me)

Isadora: Mining Hyperproperties (Current work)
How can hyperproperties that model secure behavior of designs be discovered
using specification mining?

40

Hyperproperties

Sets of Sets of Traces, or Sets of Properties

41

Example: GMNI (Noninterference)

Hi U

42“High” could be OS, “Low” could be adversary

Instrumentation
To find hyperproperties, use Information Flow Tracking (IFT) instrumentation.

● IFT creates a shadow register for all design registers to track information flow
● GMNI is an information flow hyperproperty

43

Problem Statement

How can Information Flow Tracking (IFT) and specification mining determine

where and when

interference occurs in a design from any arbitrary source?

44

Tracking Information Flow
● Given a source, registers can be in one of three categories:

○ Always a sink: source = => sink (“flows to”)

○ Never a sink: source =/=> sink (“does not flow to”)

○ Conditionally a sink source =/=> sink UNLESS <boolean expression>

45

Research Technique Sketch

46

Trace Detail
More than traces!

1. Specify Source
2. Generate Trace and IFT
3. Look at relevant regs

47

Miner Detail
1. Input Traces
2. Run Miner
3. Get Output
4. Flag interesting shadow_*

a. shadow_* is IFT state

5. (Re-)Run Miner
6. Output Information Flow

a. “Always, never, maybe”

48

Research Technique Sketch

49

Mining in Practice
● Test using write-address register

○ Always sink 003 regs

○ Never sink 189 regs

○ Conditional sink 037 regs

● Secondary mining passes can determine conditions under which the 37
conditional sinks are affected by the source register

50

Isadora: Mining Hyperproperties (Current work)
Hyperproperties that model secure behavior of designs be discovered using
specification mining along with Information Flow Tracking (IFT).

51

Mining Behavior
My research shows the technique of
specification mining can find:

● Temporal properties,
such as correct initialization

● Closed source CISC architecture
properties, such those over x86-64

● Hyperproperties, properties over
multiple traces of execution

52

(that’s me)

“Who ya gonna call?”
Cybersecurity for the Spectre Era

Any Questions?
53

