
01

Aphrodite

Juni L DeYoung
NWSA-AAASPD 2023 Meeting

Western Washington University
22 March 2023

Security
Properties of
RISC-V

02

Overview
01 Computer architecture,

instruction sets, and
emulation

Emulating RISC-V
02 Data generation is a

complicated profession

Aphrodite
03 Design choices and the

engineering process

Table of contents

03

Overview01

04

Goals
1.1

What are we doing and why are we doing it?

05

What are security-
relevant properties

of computer
hardware?

06

Collect

1. Model processor
in software

2. Record register
transfers

Analyze Report

Research Process

3. Mine traces for
properties

4. Check properties
against common
weaknesses

5. Security
properties found!

07

Background
1.2

What exactly are we studying here?

08

Computer Anatomy
I/O

M
em

ory

Storage

CPU
CSRs

Clock

PC

IR

AL
U

FP
U

GPRs

FPRs

09

Simulation

Virtualizing Hardware
Emulation

— Recreates a processor at register
transfer level (RTL)

— Modeling the actual
configuration of wires and
transistors in software

— Recreates an instruction-set
architecture (ISA)

— Doesn’t replicate specific
hardware idiosyncrasies,
only its instruction set

https://www.flaticon.com/free-icons/chip

010

― Contained in memory
— Addresses correspond to values in the program counter

― Control information flow through the processor
— Performing operations (arithmetic, load/store, navigation)

Instructions

What How Whe r e Ope r a t i on

I mme di a t e

011

RISC CISC
- One operation per

instruction
- “Load-Store” architecture
- More difficult to write

programs in assembly
- ARM

- “Microcoding”
- Instructions execute multiple

operations at once
- Smaller programs
- Fewer main memory accesses
- x86

ISA Paradigms

012

— CISC processors are proprietary trade secrets
— RISC architectures are easier to study

— Fixed-length instructions
— One instruction -> one operation

— RISC-V is an open-source design
— Funded by Intel and AMD

Why Study RISC?

013

RISC-V
Emulation is the highest form of

flattery

02

014

- Highly customizable to different configurations
- Designed for academic study and hardware implementation
- 32- and 64-bit variants

General Purpose Registers x0-x31
― x0 is fixed to value 0
― x1-x31 are read as booleans or (un)signed 2’s complement integers

Floating-point registers f0-f31
― Correspond to IEEE standard for floating-point

Control and Status Registers
― 4096 CSRs, mostly used by the privileged architecture

— Some use in unprivileged code, mostly as counters and timers
— Exceptions, interrupts, traps, control transfer

The RISC-V Spec

https://riscv.org/technical/specifications/

015

“Hello World”
.global _start

_start:

lui t0, 0x10000

andi t1, t1, 0
addi t1, t1, 72
sw t1, 0(t0)

[...]

finish:
beq t1, t1, finish

Initialize the program at “_start” label

Load address of serial port into register t0

Zero out t1
Add (int)‘H’ = 72 to t1
Send value of t1 == ‘H’ to location addressed by t0 (UART0)

The previous three lines are repeated for ‘e’,‘l’,’l’,’o’
and finally LF (line feed, aka ‘\n’)

Jump to label finish if t1==t1

https://theintobooks.wordpress.com/2019/12/28/hello-world-on-risc-v-with-qemu

016

Bare-Metal Programs on RISC-V

.s Q

Program Linked ELFELF File Output

Assembler Linker Emulator

Trace

…

017

Data Mining

.py

.dtraceAphrodite

Pr
og
ra
m

Q

.decls

. py

make_decls

Daikon Properties

https://plse.cs.washington.edu/daikon/
https://github.com/wu-jldeyoung/Aphrodite/blob/main/src/utils/make_decls.py
https://plse.cs.washington.edu/daikon/
https://github.com/wu-jldeyoung/Aphrodite/blob/main/daikon_output.txt

018

Aphrodite03 Now how do we do all that?

019

Aphrodite.py

Q

Linked
ELF

pexpect.
spawn()

QEMU

info
registers

Register
Values .dtrace

re.
findall()

https://github.com/wu-jldeyoung/Aphrodite/blob/main/src/utils/aphrodite.py

020

args = [
"-machine", "virt", "-kernel", exe, "-
monitor", "stdio", "-S",
options for running Fedora
"-smp","4", "-m","2G", "-bios",
"none",[...]

]

qemu = px.spawn("qemu-system-riscv64",
args, encoding="utf-8")

qemu.expect(".*(qemu)")
qemu.sendline("info registers")
qemu.expect("(qemu)")
qemu.sendline("c")

Using QEMU in Aphrodite

Above: a sample session in the Fedora emulation

021

qtrace .dtrace
i\x1b[K\x1b[Din\x1b[K\[...]
pc 0000000000001000\r
mhartid 0000000000000000\r
[...]
x0/zero 0000000000000000
x1/ra 0000000000000000
x2/sp 0000000000000000
x3/gp 0000000000000000\r
[...]
f28/ft8 0000000000000000
f29/ft9 0000000000000000
f30/ft10 0000000000000000
f31/ft11 0000000000000000\r
[...]

..tick():::ENTER
this_invocation_nonce
1
pc
4096
1
mhartid
0
1
[...]
f31/ft11
0
1

Trace formats

https://github.com/wu-jldeyoung/Aphrodite/blob/main/src/utils/trace/qtrace_first.txt
https://github.com/wu-jldeyoung/Aphrodite/blob/main/src/utils/trace/20220805-172853.dtrace

022

Parsing qtrace to dtrace

1. Create a .dtrace file and give it a unique name based on current system time
2. Spawn QEMU with initial parameters
3. While not timed out:

a. Parse info registers output for register values, adding to list vals

b. If vals is not equal to the last timepoint and is nonempty:

i. Split vals entries into tuples: (label, value)

ii. Cast the value hex string to an integer

iii.Write these label/value pairs to .dtrace in the appropriate format

c. Send next info registers command to QEMU

4. Quit QEMU and close .dtrace

023

Parsing qtrace to dtrace

024

Data Mining

.py

.dtraceAphrodite

Pr
og
ra
m

Q

.decls

. py

make_decls

Daikon Properties

https://plse.cs.washington.edu/daikon/
https://github.com/wu-jldeyoung/Aphrodite/blob/main/src/utils/make_decls.py
https://plse.cs.washington.edu/daikon/
https://github.com/wu-jldeyoung/Aphrodite/blob/main/daikon_output.txt

025

f21/fs5 == f26/fs10

pc != 0
mhartid == 0
mip >= 0
mideleg one of { 0, 546 }
medeleg one of { 0, 45321 }
mtvec one of { 0, 2147484904L }

x0/zero == 0
f0/ft0 >= 0
[...]
f16/fa6 >= 0
f19/fs3 one of { 0, 4607182418800017408L }
f20/fs4 one of { -4616189618054758400L, 0
}
f21/fs5 one of { 0, 4472406533629990549L }
f22/fs6 >= 0

Properties
f23/fs7 >= 0
f24/fs8 one of { 0, 4607182418800017408L }
f25/fs9 one of { -4616189618054758400L, 0
}
[...]
pc != mhartid
[...]
mhartid <= mip
[...]
mip <= mie
[...]
mie <= mtvec
mideleg <= medeleg
[...]
mtvec >= mcause
f0/ft0 >= f20/fs4
[...]

https://github.com/wu-jldeyoung/Aphrodite/blob/main/daikon_output.txt

026

Aphrodite verifies
properties guaranteed

by the ISA specification.

027

CREDITS: This presentation template was created by Slidesgo, and
includes icons by Flaticon, and infographics & images by Freepik

Questions?
jldeyoung@willamette.edu
willamette.edu/~jldeyoung
github.com/wu-jldeyoung

Please keep this slide for attribution

http://bit.ly/2Tynxth
http://bit.ly/2TyoMsr
http://bit.ly/2TtBDfr
mailto:jldeyoung@willamette.edu
http://willamette.edu/%7Ejldeyoung
https://github.com/wu-jldeyoung

	Aphrodite
	Overview
	Overview
	Goals
	What are security-relevant properties of computer hardware?
	Collect
	Background
	Computer Anatomy
	Virtualizing Hardware
	Instructions
	ISA Paradigms
	Why Study RISC?
	RISC-V
	The RISC-V Spec
	“Hello World”
	Bare-Metal Programs on RISC-V
	Data Mining
	Aphrodite
	Aphrodite.py
	Using QEMU in Aphrodite
	Trace formats
	Parsing qtrace to dtrace
	Parsing qtrace to dtrace
	Data Mining
	Properties
	Aphrodite verifies properties guaranteed by the ISA specification.
	Questions?

